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INTRODUCTION  

AND BACKGROUND

My goal is to correctly discuss an interaction term before I die.

—Confidential Dissertator (ca. 2000)

OVERVIEW: WHY SHOULD  
YOU READ THIS BOOK?
The inevitable question that the author of a statistics book like this has to address is 
whether another book on interaction effects is necessary—why a reader should read it—
given that analyses incorporating both simple and more complicated interaction effects 
are commonplace. My first answer is embodied in the chapter quote above, which is as 
true today as it was nearly 20 years ago. Many graduate students as well as post-PhD 
researchers continue to have difficulty properly testing, interpreting, or specifying inter-
action effects in linear regression, let alone for nonlinear regression techniques.

This is evident in the apparent short life cycle of publications on how to interpret 
interaction effects properly. Every 5 to 10 years, there is a renewed call for researchers 
to follow best practices to avoid common problems. Each explicitly argues that these 
points are important to continue to reiterate because they still do not consistently 
inform actual practice (e.g., Aiken & West, 1991; Brambor, Clark, & Golder, 2006; 
Braumoeller, 2004; Dawson, 2014; Hayes, Glynn, & Huge, 2012; Jaccard, 1998; 
Jaccard & Turisi, 2003; Kam & Franzese, 2007; Southwood, 1978). When quantita-
tively oriented colleagues and graduate students learn that I am writing a book on the 
interpretation of interaction effects, their typical reaction is along the lines of “Great. 
My students could really use it and so could I. When will it be out so we can read it?”

Second, I identify and discuss solutions to a little recognized problem with tabular 
and graphical presentations of predicted outcomes derived from analyses using many 
types of generalized linear models (GLMs). Look at the two plots in Figure 1.1 from 
a negative binomial regression (a count model) predicting the number of voluntary 
associations in which the respondent is a member. The only difference is that one 
model contains only linear terms for age, education, and sex (main effects) and the 
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2  Interaction Effects in Linear and Generalized Linear Models

other also includes product terms between every pair of these predictors and a prod-
uct of Age × Education × Sex—that is, a three-way interaction. Just from examin-
ing the plots, can you convince yourself which plot shows the main effect model’s 
predictions and which portrays the interactive effect model’s predictions? Is it Plot B 

FIGURE 1.1   PREDICTED VALUE PLOTS FROM MAIN EFFECTS AND 
INTERACTIVE EFFECTS MODELS
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Chapter 1 ■ Introduction and Background   3

showing interaction effects in which education mutes the effect of age for men? Or is 
it Plot A representing education as enhancing the effect of age for men?

Moreover, if you were given only the main effects plot (whichever it is), can you 
honestly say you would identify it as representing a main effects model and not an 
interactive effects model? My point is that it can be difficult to visually distinguish 
a graph from a model with an interaction effect from one without an interaction 
effect in nonlinear models. And this hampers an analyst’s ability to interpret visual 
or tabular displays of interaction effects effectively as well as a reader’s ability to 
understand what is presented. The problem is that a plot or a table of predicted values 
incorporates and portrays two sources of nonlinearity simultaneously: the nonlinear-
ity of the interaction effect and the inherent nonlinearity of many GLMs in how 
they model the relationship between the outcome and the predictors. This issue and 
recommended solutions are the topic of Chapter 5.

Moreover, four limitations of the current didactic literature (Aiken & West, 1991; 
Brambor et al., 2006; Braumoeller, 2004; Dawson, 2014; Hayes, 2013; Hayes  
et al., 2012; Jaccard, 2001; Jaccard & Turisi, 2003; Jaccard & Wan, 1996; Kam & 
Franzese, 2007; Southwood, 1978) motivated me to write this book and shaped its 
content to overcome and avoid these problems. Specifically, existing treatments are 
subject to at least one and usually more of the following shortcomings:

• They address a limited range of analytic models—often a single technique, 
most commonly ordinary least squares (OLS) regression.

• They provide details and examples only for the simplest interaction effect— 
a focal variable with a single moderator (often a two-category nominal 
predictor)—leaving readers to extend the approach to more complicated 
interaction effects themselves.

• They do not cover a wide range of tools for interpreting interaction effects.
• They provide limited, if any, assistance, with rare exceptions, for automating 

the calculations needed for many of the tools for interpreting interaction 
effects (i.e., software code/programs or spreadsheet-friendly formulas). And 
if they do so, it is specific to a particular technique of analysis.

These limitations result in piecemeal knowledge in which practitioners learn how to 
use some interpretive and calculating tools for one technique but different ones for 
another. Moreover, there is considerable (wasted) effort as researchers reinvent the 
wheel by creating their own specialized programs or spreadsheets for doing calcula-
tions and creating tables and graphics.

Consequently, my goal in writing this book is to provide a unified approach for inter-
preting interaction effects, which is more comprehensive in its coverage of interpretive 
tools as well as applicable across a wide range of techniques of analysis. I have also cre-
ated a set of Stata routines (ado files) named ICALC—for Interaction CALCulator—
to apply the interpretive tools I discuss in this book. ICALC can be downloaded 
free of charge at www.icalcrlk.com as can the data sets and Stata syntax (do-files) 
for all the book’s examples. Readers may find it helpful to follow along in the do-
files as they read the application examples. I chose Stata for this platform primarily 
because I consider this book an intellectual companion to Long and Freese’s (2014) 

Stata is a registered trademark of StataCorp LLC.
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4  Interaction Effects in Linear and Generalized Linear Models

book on interpretive techniques for common nonlinear models. And ICALC uses 
their SPOST13 suite of tools written for Stata for many of its calculations. Moreover, 
Stata is, by most indicators, one of the top four package platforms for data analysis, 
and unlike IBM SPSS Statistics and SAS, its popularity is growing, not declin-
ing (Muenchen, 2017). You can download and install the ICALC Toolkit when 
you are running Stata with online access. In the Stata Command window, type net 
search icalc. The Stata Results window should show four packages. Click the link for  
icalc_ado to install the ICALC program and help files in your PERSONAL direc-
tory. Use the same process if you need to install SPOST13, which I would highly 
recommend. To provide readers the flexibility to apply these tools on other platforms,  
I strive to present sufficient mathematical details for and application examples of the 
underlying formulas to enable readers to write their own spreadsheet formulas or soft-
ware code for the platform they use. Furthermore, ICALC automatically stores graph-
ics during a session as editable-in-Stata graphs (memory graphs) and provides options 
to save numeric results, tables, and the underlying data used to construct graphics in 
an Excel spreadsheet. These features give users the flexibility to customize graphics 
in Stata or to use the saved data to create their own graphics using other platforms.

In the next several sections, I review basic background material about interaction 
effects, GLMs, and relevant statistical and diagnostic tests. I would recommend that 
readers well-versed in these topics at least skim through this material to ensure that 
nothing essential is missed. In particular, the section on confounded nonlinearities 
in GLMs is likely an unfamiliar issue. I conclude the chapter with a roadmap of the 
content and organization of the rest of the book.

THE LOGIC OF INTERACTION EFFECTS  
IN LINEAR REGRESSION MODELS
Let me start by answering four basic questions about interaction effects: (1) What is 
an interaction effect? (2) Why should you consider including an interaction effect in 
your analysis? (3) How do you specify an interaction effect in the prediction function 
of a linear regression model? (4) When is an interaction effect statistically significant?

What Is an Interaction Effect?

Conceptually, an interaction effect is a way of specifying that the relationship between 
the outcome and a first predictor, call it F, is contingent on the values of another predic-
tor, call it M1. Or, to put it a different way, the effect of F on the outcome varies with the 
values of M1. For example, an economist might argue that the earnings return to work 
experience is greater for a worker with more education than for a worker with less edu-
cation. That is, the earnings–experience relationship is different depending on the level 
of a worker’s education; a worker with more years of education would receive a higher 
payoff to his or her work experience. Or a legal scholar might argue that the effect 
of education on approval of a legal ban against racial intermarriage differs by race. 
Specifically, education is more consequential for Whites’ approval of a legal ban against 
racial intermarriage—it reduces their approval more—than it is for Blacks’ approval.

The first predictor, F, is often labeled the focal variable in the interaction, and the sec-
ond predictor, M1, is often referred to as the moderator or the moderating variable. This 
corresponds to the fact that interaction effects are frequently developed with a primary 
theoretical or conceptual focus on one of the predictor’s effects and how those effects 

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 1 ■ Introduction and Background   5

are moderated by the second predictor. For this reason, interaction effects are sometimes 
called moderated effects (e.g., Hayes, 2013; Jaccard, 1998; Jaccard & Turisi, 2003).

This is a very useful heuristic device that I also adopt throughout the book, but the 
roles of moderating and focal variables should not be reified. They are arbitrary from 
a statistical point of view because the contingency of the Outcome–F–M1 relation-
ship works both ways. That is, specifying that the effect of F is contingent on M1 
also specifies that the effect of M1 is contingent on F. Thus, in the first example, it 
is equally valid to argue that the earnings–education relationship is contingent on a 
worker’s years of work experience. And the flipside in the second example is that the 
effect of race on approval varies with education.

Interaction effects are not limited to a single pair of predictors. You could specify 
that F ’s effect on the outcome changes with two other predictors separately—a two-
moderator model—or that it is dependent on the specific combination of values of 
the other two predictors—a three-way interaction. In the race–education–legal ban 
example, the legal scholar might extend the original hypothesis to argue that the 
effect of race varies not only by education but also by region of residence. A two-
moderator model would specify that the race-by-education effect on approval is the 
same in each region, that the race-by-region effect is the same at each level of edu-
cation, and that there is no interaction between education and region. In contrast, 
a three-way interaction model would specify that the race-by-education effect on 
approval differs across regions, that the race-by-region effect varies with education, 
and that the education-by-region effect varies by race.

Why Should You Consider Including  
an Interaction Effect in Your Analysis?

With some exceptions in practice, the primary rationale for estimating and testing 
interaction effects is on theoretical or substantive grounds. That is, you have developed 
new hypotheses or expectations that certain predictors should have contingent effects. 
But it is also conventional to include interaction effects to reflect current knowledge in 
the literature. Additionally, in many of the social sciences (certainly in my discipline 
of sociology), it is commonplace to propose and analyze outcome differences between 
groups defined by their social characteristics or statuses such as race/ethnicity, sex or 
gender, sexual orientation/identity, class, and so on. In the course of developing the 
rationale for group differences, it is not unusual (and often purposeful) to make an 
argument that groups diverge in outcome levels because different factors are impor-
tant for some groups, or the same factors have varying effects. Both these arguments 
create an expectation that interaction effects exist and set the stage for testing for 
interactions between the groups and at least some of the predictors.

Diagnostic testing of model fit or for model misspecification sometimes provides the 
grounds for estimating and testing for interaction effects. For example, finding a sig-
nificant diagnostic test for the presence of heteroscedasticity might instead indicate 
the presence of an interaction effect or some other misspecification of the model’s 
functional form (Fox, 2008, p. 274; Greene, 2008, pp. 166–167; Kaufman, 2013, 
pp. 22–23). Similarly, a residuals analysis could find issues with the functional form 
of two predictors that might suggest an unspecified interaction effect.

Even the failure to find a significant effect for a predictor might lead you to test for 
interaction. When a predictor has opposite-signed effects for two groups—or changes 
sign across the range of its moderator—this can easily average out to a nonsignificant 
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6  Interaction Effects in Linear and Generalized Linear Models

test of its effect. In such circumstances, I would recommend that you think seriously 
about the substantive sensibility of specifying an interaction effect before testing for 
its presence. Other specifications or corrective actions might be more conceptually 
appealing. And adding interaction effects as a result of data mining runs the risk of 
overfitting and hence misspecifying the model.

How Do You Specify an Interaction Effect in the  
Prediction Function of a Linear Regression Model?

To include an interaction effect, you model the outcome Y as a linear function of the 
focal and moderating variables (F and Mj), their product terms, and a set of other 
predictors. The coefficients for the focal and moderating variables are commonly 
referred to as the “main effects” of the predictors, while the coefficients for the prod-
uct terms are called “interaction effects.” Your model should, with rare exceptions, 
satisfy the principle of marginality (Fox, 2008; Nelder, 1977), also known as the 
criteria for a hierarchically well-formulated model (Jaccard, 2001; Kleinbaum, 1992):

[This] specifies that a model including a higher order term (such as an 
interaction) should normally also include the “lower-order relatives” of that 
term (the main effects that “compose” the interaction). (Fox, 2008, p. 135)

Table 1.1 lists the predictors your model should contain for several forms of interac-
tion effects to adhere to the principle of marginality. Specifically, you add a product 
term formed by multiplying together all the predictors in the highest order interaction 
as well as product terms for every lower order relative. For a one-moderator model, 
you add a predictor defined as the product of F and M1. Notice that I said “add” a pre-
dictor because you keep the individual predictors in the model when you include the 
product term following the principle of marginality. Similarly, for a two-moderator 
model, you have three individual predictors (F, M1, and M2) plus two product terms 
(F × M1 and F × M2). For a three-way interaction model, you have three individual 
predictors (main effects), three pairs of product terms among the three predictors 
(lower order relatives), and a product term for F × M1 × M2 (highest order term).

TABLE 1.1   PREDICTORS INCLUDED FOR FORMS OF INTERACTION 
MODELS

Interaction Form
Predictors in Model for Interaction 
Specification

One moderator F, M1,

F × M1

Two moderators F, M1, M2,

F × M1, F × M2

Three-way interaction F, M1, M2,

F × M1, F × M2, M1 × M2,

F × M1 × M2

Two moderators,  
M2 categorical

F M D D DM M M, , , ,1 2 1 2 32 2= = =

F × M1

F D F D F DM M M× × ×= = =2 1 2 32 2
, ,
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Chapter 1 ■ Introduction and Background   7

How does adding product terms work to create contingent effects of the interact-
ing variables? For simplicity and specificity, let’s work with a single-moderator 
specification:

 Y a b F b M b F M= ++ + + ×1 2 1 3 1 �  (1.1)

Mathematically, the effect of a predictor on Y in a linear regression model is defined 
as the partial derivative of Y with respect to a predictor,1 which is the slope of the 
regression plane. The partial derivative is equal to a predictor’s estimated coefficient 
if the predictor is not part of an interaction specification (or a multiple-variable func-
tional form, e.g., a parabolic effect). For an interaction specification, the partial deriv-
ative gives the effect of F as the main effect coefficient for F (b1) plus the coefficient 
for the product term F × M1 (b3) multiplied by the value of M1:

 
Ef ect off F

Y
F

b b M=
∂
∂

= +1 3 1  (1.2)

This tells us very concretely how the effect of F on Y changes with the value of the 
moderator. Similarly, the effect of M1 found by taking the partial derivative of Y with 
respect to M1 is

 
Effect of M

Y
M

b b F1
1

=
∂
∂

= +2 3  (1.3)

Using these formulas, we can determine the nature and shape of the moderated 
effect of F (or M1) on the outcome and how those change across different values of 
the moderator. By nature and shape of the effect, I mean the direction of the effect 
of F (positive or negative), whether it changes sign for different values of M1, whether 
it changes significance across the values of M1, and whether the moderated effect is 
ordinal or disordinal (see the Aside). How to probe the nature and shape of the inter-
action is covered in depth in Chapters 2 to 5.

ASIDE: ORDINAL AND DISORDINAL INTERACTIONS

Consider drawing a set of prediction lines for the value of Y plotted against F, each 
prediction line for a different value of M1. These prediction lines will all cross at 
the same value of F (Jaccard & Turisi, 2003, p. 78). The interaction is ordinal if 
that value of F does not fall within the sample range of values of F. It is disordinal 
if the crossover value lies within the sample range of F. Conceptually, a disordi-
nal interaction means that the outcome for a given value of the focal variable F 
and a specific value of the moderator M1 is sometimes greater but is sometimes 
less than the outcome for the same value of F and a different value of M1. And an 
ordinal interaction means that the outcome for a given value of the moderator M1 
is always greater (or always less) than the outcome for a different value of the 
moderator, for any value of F in the sample range.

What if one or all of your predictors are categorical? For each categorical predictor 
listed in Table 1.1, you would replace the single-variable expression with the set of 
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8  Interaction Effects in Linear and Generalized Linear Models

binary indicators for your predictor. When you create product terms between two 
predictors, you multiply every term in the first predictor’s expression by every term 
in the second predictor’s expression. To illustrate, the last row in Table 1.1 shows the 
terms included in a two-moderator interaction specification if F and M1 are interval 
variables but M2 is a three-category construct represented by dummy variables for 
Categories 1 and 2 (DM2 1=  and DM2 2= ; Category 3 is the reference category). To 
create the list of included predictors, you replace every occurrence of M2 with its set 
of dummy indicators. For example, in the expression F × M2, you replace M2 with 
DM2 1=  and DM2 2=  and multiply by F, which gives two product terms to include in the 
model: F × =DM2 1 and F × =DM2 2 .  The corresponding prediction function becomes

 

Y a b F b M b F M b D b D
b F D b F D

M M

M M

= + + + × + + +

× + × +
= =

= =

1 1 3 4 1

1 7 2

2

2 2

2 1 5 2

6

2

�  
(1.4)

Taking the partial derivative of this prediction function, the moderated effect of F is

 
Effect of 1 3 1 6 1 7 22 2

F
y

dF
b b M b D b D

d
M M= + + += + = = �  (1.5)

Because this is a two-moderator interaction, the effect of F varies corresponding 
to both the values of M1 and the categories of M2. As I elaborate in Chapter 2, the 
expressions for the moderated effect of F like those in Equations 1.2, 1.3, and 1.5 are 
an important basis for understanding and interpreting interaction effects.

A path–style diagram can be a useful device to show succinctly the nature and form 
of your interaction specification, especially for more complicated interaction specifica-
tions or when some of your interacting predictors are categorical. Writing out the pre-
diction function in terms of all the component predictors that constitute it is essential 
for running your analysis, and such an equation communicates the form of the interac-
tion well to mathematically or formulaically inclined readers. But for many readers, a 
diagram like Figure 1.2 for the two-moderator example is much more comprehensible.

FIGURE 1.2  PATH–STYLE DIAGRAM OF INTERACTION EFFECT
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Chapter 1 ■ Introduction and Background   9

The path diagram has boxes for the focal and moderator variables in the leftmost col-
umn and for the two-way interaction terms in the second column, and the outcome 
is a vertical box on the right. There is a box for each construct in the interaction, 
and the box indicates whether the construct is measured by a single predictor or a 
set of indicators. The interaction terms are expressed as Focal × Moderator variable 
names to make the conceptual and mathematical relationships clearer. Lines connect 
main effect terms to the relevant two-way interaction terms and connect the two-way 
terms to the outcome. Intersecting lines—where one line stops with its arrowhead on 
the other line—indicate that the effects of the corresponding variables interact. This 
provides a visual and conceptual map of the interaction specification.

The diagram shows that F and M1 interact because their lines intersect and lead 
to their corresponding two-way interaction term. Similarly, F and M2 interact. But 
M1 and M2 do not interact because their lines do not intersect. The diagram shows 
a nonintersecting line from the “Other Predictors” box to the “Outcome” box as a 
reminder that a model usually has more than just the interacting predictors. In prac-
tice, the estimated coefficients could be shown in the diagram.

When Is an Interaction Effect Statistically Significant?

Part of the answer to why include an interaction specification is that it is statistically 
significant, but what does that mean in terms of what you specifically test? The essen-
tial statistical test is whether or not the coefficient(s) for the highest order term in 
the interaction are significant. If the coefficient(s) are not significantly different from 
zero, you would conclude that the lower order effects on Y do not vary at that highest 
level. The significance or lack of significance of any lower order term constituting the 
interaction is irrelevant to this decision (Aiken & West, 1991, p. 50).

For example, in a one-moderator model in which F and M1 are interval level, the 
highest order term is F × M1, and if its coefficient is not significant then the effect of 
F does not depend on M1 and you should use a model without the interaction term. 
If the F × M1 coefficient is significant, you would conclude that the effect of F varies 
with M1 and use the interactive model results. The significance of the main effect of 
F is not relevant because this tests whether F ’s effect is significantly different from 
zero when M1 = 0. To see why the main effect coefficient is the effect of F when  
M1 = 0, look back at Equation 1.2, which defines the effect of F. Substitute 0 as the 
value for M1, and this leaves b1, the main effect coefficient for F:

 Effect of 1 10F b b b= + =3 ×  (1.6)

This means that b1 is the effect of F when M1 takes on the value of zero and tells you 
nothing about the significance of F ’s effect at any other value of M1. Its significance 
may or may not be a substantively interesting finding by itself, but it is not informative 
about the statistical grounds for including the interaction in your model. The same 
holds true for testing the main effect of M1: This tests the effect of M1 when F = 0.

What if you were testing a three-way interaction? You would test the coefficient(s) for 
the product of the three predictors (F × M1 × M2), and if it is significant keep all the 
interaction terms in your prediction equation. The significance of the two-way product 
terms, as well as the main effect terms, is not relevant to this decision because they are 
tests of effects when the moderating variables equal zero (Aiken & West, 1991, p. 50).

How you test the significance of the highest order term depends on whether or not 
you have directional hypotheses about the coefficients of the highest order term and 
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10  Interaction Effects in Linear and Generalized Linear Models

on whether it consists of a single coefficient or multiple coefficients. Table 1.2 sum-
marizes the commonly used test statistics for different combinations of the testing 
situations. When you have directional hypotheses, there is no choice; you use a z test 
or a t test, as appropriate for your estimation technique. If you are testing a single coef-
ficient, then the decision rule is straightforward. Keep the highest order interaction 
term in your model if its coefficient is significant and exclude the term if it is not. If 
you are testing multiple coefficients, it is typically because the focal or one or more 
of the moderating variables is nominal with three or more categories. This creates 
multiple product terms in the highest order interaction, like the two-way interaction 
of F and M2 in Equation 1.4. In this case, you need to decide before you conduct the 
statistical testing what results constitute sufficient grounds for keeping the interaction.

A stringent rule (rarely applied to my knowledge) would be that all of the directional 
tests are significant. A common approach is to keep the set of coefficients in the 
model if any one of them is significant, with a Bonferroni or other correction of the 
significance level for conducting multiple tests.2 One complication is that a different 
choice of reference category (or an alternative parameterization) will on occasion 
lead to a different conclusion. For this reason, an alternative approach is to supple-
ment the tests of individual coefficients with a global nondirectional test such as the 
likelihood ratio (LR) test or the Wald test. While a global test is nondirectional, it is 
un affected by the choice of reference category and provides a guard against excluding 
a significant interaction by your choice of a reference category. The decision rule in 
this scenario is to keep the set of coefficients in the model if either the multiple coef-
ficient tests or the global test yields a significant result.

For nondirectional hypotheses, more choices are possible when testing a single coef-
ficient: a z or t test of the coefficient, a Wald test, or the LR test. However, note that 
the Wald test and the single-coefficient test will always give identical results.3 Thus, 
it does not matter which one you use. For testing multiple coefficients, a global test 
(Wald or LR test) is generally preferred over conducting multiple t tests on the indi-
vidual coefficients for the reason given earlier: The global test is robust against chang-
ing the reference category or other equivalent reparameterizations.

But using just a global test will occasionally find the set of coefficients not signifi-
cantly different from zero when one or more of the individual coefficients is signifi-
cant and of substantive interest. Thus, some analysts use the same either/or decision 
rule described earlier: Include the interaction if the highest order terms are significant 

TABLE 1.2  TESTS OF THE HIGHEST ORDER INTERACTION TERM(S)

Test

Directional Hypotheses Nondirectional Hypotheses

Single Multiple Single Multiple

z test/t test Preferred Preferred Yes Supplement

Wald test Supplement Yes Yes

LR test Supplement Preferred 
MLE

Preferred MLE

Note: LR = likelihood ratio; MLE = maximum-likelihood estimation.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 1 ■ Introduction and Background   11

using the global test or if at least one coefficient is significant from the multiple tests 
of single coefficients using a z or t test.

The LR test is preferred over the Wald test for nonlinear models and/or techniques 
of analysis using maximum-likelihood estimation, especially with a large sample 
size. The minor disadvantage is that you must run the model twice—once with all 
of the interaction terms and once excluding only the term(s) for the highest order  
interaction—and then test the change in the log likelihood between the two models. 
Some analysts prefer the Wald test because it is asymptotically equivalent to the LR test, 
and you do not have to make strong distributional assumptions as you do when using 
the LR test. Additionally, the Wald test does not require estimating two models, which 
is pragmatically an advantage only in those relatively rare instances in which model 
estimation takes a significant amount of time or if you are applying the test repeatedly.

What should you do if you test the highest order terms of, say, a three-way interac-
tion (F × M1 × M2), and it is not significant? You would conclude that the effect of 
F does not vary across different combinations of the values of M1 and M2. But F ’s 
effect might vary with M1 regardless of M2’s values and with M2 regardless of M1. You 
would test those possibilities by running a two-moderator model and testing each of 
those two-way terms (F × M1, F × M2, M1 × M2) and keep a two-way term only if it 
is individually significant.

Common Errors in Specifying  
and Interpreting Interaction Effects

For concreteness in describing and discussing these errors, consider a single-moderator 
interaction specification in which number of children is predicted by the interac-
tion of family income and a dummy indicator of birth cohort (1 = Pre–Baby Boom,  
0 = Baby Boom and younger):

 

Children a b Income b Cohort b Income Cohort
Children

= + + + × +
=

1 2 3 �
4 4. 7783 0 1075 1 0251
0 0327

− − +
× +

. .
.

Inc me Cohorto
Income Cohort �  (1.7)

Excluding Lower Order Terms
The most frequent mistake analysts make in specifying an interaction effect is to not 
include in the prediction function all of the lower order terms, sometimes referred to 
as constitutive terms (Aiken & West, 1991; Brambor et al., 2006; Braumoeller, 2004; 
Jaccard, 2001; Kam & Franzese, 2007). Doing so violates the principle of marginal-
ity and fundamentally changes the meaning, estimated values, and/or statistical test 
results of the coefficients for the other terms in the interaction specification. Perhaps 
the most consequential issue is the potential for model misspecification (Kam & 
Franzese, 2007, pp. 100–101). Unless you have both a clear theoretical argument 
for this exclusion and a high certainty that empirically b2 = 0, you run the risk of an 
omitted-variable bias affecting the estimates of any predictor that is correlated with 
the omitted variable.

Suppose the main effect of cohort was excluded from the prediction equation. 
Because Income × Cohort is very likely to be positively correlated with cohort, the 
effect of cohort will be partly attributed (added) to the Income × Cohort effect. 
Depending on the sign of the (omitted) effect of cohort and of Income × Cohort, 
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12  Interaction Effects in Linear and Generalized Linear Models

this exclusion would either increase or decrease the estimated coefficient for  
Income × Cohort. Thus, the significance test of the interactive model of income and 
cohort versus a linear model of effects will be biased as well. Moreover, this exclu-
sion constrains the prediction line for children plotted against income for each 
birth cohort to have the same intercept but a varying slope, which Fox (2008) aptly 
describes, for a different empirical example, as “a specification that is peculiar and of 
no substantive interest” (p. 138).

A related question that invariably comes up when I first introduce students (or col-
leagues) to interaction effects is whether you should exclude from the model non-
significant lower order terms if the highest order term is significant. The proposed 
rationale for doing so is that keeping the lower order terms in the model unneces-
sarily inflates the standard errors of the other predictors (decreases the efficiency of 
estimates). However, the consequences of excluding the lower order terms when they 
should be included are much more consequential—biased coefficient estimates, as  
I just discussed.

The more fundamental problem with deciding to exclude nonsignificant lower order 
terms is that you could well make the opposite decision if you had a mathematically 
equivalent but different specification of your interaction model. In the example, sup-
pose the main effect of income (b1) is significant, so you don’t think about excluding 
it from the prediction equation. Someone else does the same analysis except that 
instead of older cohort (1 = older cohorts and 0 = most recent) he or she uses recent  
(1 = most recent cohorts and 0 = older cohorts) and their prediction equation is

 Children a b Income b Recent b Income Recent= + + + × +∗ ∗ ∗ ∗
1 2 3 �  (1.8)

But they find the main effect of income (b1
∗) is not significant, so they decide to 

exclude the main effect term for income from the prediction equation. The problem 
with these opposite decisions is that the two prediction equations are mathematically 
equivalent to each other—you can derive the coefficients of one from the coefficients 
of the other. To see this, realize that Recent = 1 − Cohort and rearrange the terms:

  Children a b Income b Cohort b Income Cohort= + + −( ) + × −( )∗ ∗ ∗ ∗
1 32 1 1 ++

= + + ( ) − −

��

��Children a b b b Income b Cohort b Incom( ∗ ∗ ∗ ∗ ∗ ∗+2 1 3 3) 2 ee Cohort× +�
(1.9)

We can now write the coefficients for the original parameterization in terms of the 
alternative parameterization:

a a b b b= + = + = − = −* * * * * *
2 1 1 3 2 2 3 3b b b b b

The point is that the two analyses test different things when they test the main 
effect of income in their prediction equation. The first analysis tests the effect of 
income when Cohort = 0 and the second tests the effect of income when Cohort = 
1 (i.e., Recent = 0). The underlying conceptual problem with excluding the main 
effect term is that it serves to anchor the moderated effect of income by setting a 
value for the effect when its moderator (whether cohort or recent) takes on the value 
of zero. When you change between equivalent parameterizations, the anchor value 
adjusts so that you get the same moderated effect of income. So you need to keep it 
in the model as long as the higher order term is in the model. (For a more detailed 
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Chapter 1 ■ Introduction and Background   13

discussion, see Aiken & West, 1991; Allison, 1977; Brambor et al., 2006; Kam & 
Franzese, 2007.)

Interpreting Coefficients as Unconditional Marginal Effects
Because the lower order and higher order terms in the interaction specification are 
functionally related, you cannot interpret the coefficient for any interaction term 
without considering how it is related to the other interacting predictors (Aiken & 
West, 1991; Allison, 1977; Brambor et al., 2006; Braumoeller, 2004). Consider the 
numeric coefficient of −1.0251 for the main effect of cohort in Equation 1.7. The 
incorrect way to interpret this would be to say that the predicted number of chil-
dren for the older cohorts is about one less child than for the younger cohorts. This 
depicts an unconditional relationship between cohort and children and ignores that 
the effect of cohort is functionally related to the interaction of Cohort × Income.

A correct interpretation would be that when Income = 0, the predicted number of chil-
dren for the older cohorts is about one child less than for the younger cohorts. Notice 
how this statement makes clear that income values define a contingent relationship of 
cohort to children. But it does not tell the full story of that contingency. A better descrip-
tion would be that the predicted number of children for the older cohorts is about one 
child less than for the younger cohorts when Income = 0 and is predicted to increase 
by 0.0327 children for each $10K increase in income. Equivalently, and perhaps more 
informative, would be to replace the end of the sentence with “… Income = 0 and is pre-
dicted to increase by about one third of a child for a $100K increase in income.”

Interpreting Main Effect Coefficients  
When Not Meaningful and the Myth of Centering
It is always technically correct to interpret a main effect coefficient as the effect of the 
predictor when its moderator is equal to zero. But that technical interpretation is not 
always meaningful—in particular, when zero is not a possible value for the modera-
tor or if zero is possible but is not within the sample range for your analysis. In those 
cases, the interpretation is not meaningful and may be confusing. For example, sup-
pose you are analyzing how household size moderates the effect of rent on savings. 
The minimum household size is one, so it would not be sensible to interpret the effect 
of rent for a household with zero people.

This is one reason why some didactic works on interaction effects recommend center-
ing an interval (continuous) predictor by subtracting its sample mean before running 
the analysis (Aiken & West, 1991; Dawson, 2014; Hayes, 2013; Jaccard & Turrisi, 
2003). If a predictor’s moderator is centered, then the main effect of the predictor 
is its effect when the centered moderator equals zero—which is to say, when the 
moderator equals its mean. In this case, the main effect term will have a meaning-
ful interpretation. In the household size by rent example, the main effect coefficient 
for rent would now be meaningful because it would refer to the effect of rent when 
household size is equal to its sample mean. But the numeric value, interpretation, and 
statistical significance of the moderated effect (Equation 1.5) is the same whether or 
not you center your predictors (Kam & Franzese, 2007, p. 97).

The myth of centering refers to the second reason often given for centering; namely, 
that it supposedly reduces problems of collinearity between the components of the 
interaction specification. The reality is that centering makes no real difference in the 
estimation of the parameters of the model. Some coefficients and their meanings 
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14  Interaction Effects in Linear and Generalized Linear Models

change because you changed the measurement of your predictors but not, as noted 
above, the overall moderated effect of the predictor. The minor and rare exception 
is that if the collinearity is so extreme that the parameters for the uncentered model 
cannot be estimated, it is possible but not likely that centering could make enough of 
a difference to estimate the parameters.

In any case, you can mathematically derive the uncentered coefficients and their stan-
dard errors from the centered coefficients, their standard errors, and the covariance 
between the coefficients, and vice versa (see Kam & Franzese, 2007, pp. 96–98). A 
point that is often overlooked is that collinearity among the components of an inter-
action specification is normal and expected. The predictors are functionally related in 
how they create the overall moderated effect and should be in many instances highly 
correlated. We should not expect to get precise estimates of the coefficients for the 
individual components of an interaction because there is by definition a mathemati-
cal relationship between the magnitude of the coefficients—each depends on the 
values of the other predictors in the interaction.

I want to clarify that I am not arguing against examining your data for potential 
problems of collinearity among your predictors by means of standard diagnostic 
tools, such as the presence of very high bivariate correlations, variance inflation indi-
ces, or the Belsley, Kuh, and Welsch (1980) collinearity diagnostics. Just do not be 
concerned about potential multicollinearity among the component predictors of an 
interaction specification.

In sum, there is neither any harm in centering your predictors nor any major advan-
tage. The one gain is that centering can give a main effect coefficient a meaningful 
interpretation when a moderator value of zero is not possible. In general, the ability to 
meaningfully interpret the main effect can be useful in some analyses. This is invari-
ably true when the moderator is a dummy variable indicator or a set of dummy vari-
able indicators (which you would not center) because the value of zero corresponds 
to the reference category. For example, the main effect of income on children is the 
income effect for recent cohorts (Cohort = 0).

Not Interpreting the Moderated Effect of  
Each Predictor Constituting an Interaction
Brambor et al. (2006) document that many articles in top political science journals 
that report interaction effect analyses fail to provide an overall picture of the nature 
and significance of the moderated effect (Equation 1.5). In practice, many analyses 
only report and discuss the effect and statistical significance of a predictor when its 
moderator is equal to zero rather than reporting and describing how the effect and 
its significance changes across the range of the moderator (see the brief example 
discussed earlier in which I described the effect of cohort as it varies with income). 
This leads to incomplete and possibly misleading conclusions about the moderated 
relationship and the hypothesis it represents.

A related issue is a tendency to reify the heuristic device of designating one of the 
interacting predictors as the focal variable and the others as the moderating variables 
(also known as conditioning variables). This leads to a failure to reverse the roles 
of focal and moderating variables by only interpreting the moderated effect of the 
focal variable. This ignores that a higher order interaction term is symmetric and 
modifies the effects of all its constitutive predictors. As a result, authors provide and 
discuss partial and potentially incorrect descriptions of the nature of the complete 
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Chapter 1 ■ Introduction and Background   15

interactive relationship (Berry, Golder, & Milton, 2012; Kam & Franzese, 2007).  
I think this tendency is reinforced by the fact that researchers sometimes propose and 
test hypotheses about contingent relationships based on asymmetric logic. That is, 
they initially develop hypotheses explicitly arguing how one factor creates contingent 
effects of the other and do not explicitly develop hypotheses or rationales for the 
interaction the other way around.

THE LOGIC OF INTERACTION  
EFFECTS IN GLMs
What Are GLMs?

They are a class of models that generalize linear regression by relaxing its assumptions 
to create a common statistical foundation for a wide range of specialized statistical 
models. To define a GLM, I follow the updated criteria described by Hardin and Hilbe 
(2012, chap. 2), which includes a wider set of models than the traditional formulation 
(Nelder & Wedderburn, 1972). Fox (2008, pp. 379–387) concisely frames the GLM 
approach as three questions whose answers define the type of GLM estimated:

1. What probability distribution characterizes the distribution of the outcome 
(Y ) conditional on the predictors (X )? With limited recent exceptions 
(Hardin & Hilbe, 2012, p. 12), the choices are from the exponential 
distribution family and require that the variance be solely a function of 
the mean. Common choices include the normal, binomial, multinomial, 
Poisson, negative binomial, gamma, and inverse-Gaussian distributions.

2. What link function g( ) transforms the expected value of the outcome, 
µ = ( )E y , such that it is a linear function of the predictors? The link 
function g( ) must be monotonic, one-to-one, and differentiable. The most 
frequent options are the identity, log, inverse, inverse-square, square-root, 
logit, probit, log-log, and complementary log-log functions (see Fox, 2008, 
p. 380, table 15.1, for the mathematical definition of these link functions).

3. What variables X constitute the linear prediction function for η, the 
transformed expected value of the outcome—that is, for η µ β= ( ) =g X ? 
As for a linear model, you specify a linear and additive function of the 
predictors with coefficients β. Thus, the prediction function may include 
dummy variables, logged variables, polynomial functions, product terms for 
interactions, and the like.

For didactic and notational reasons, it is useful to think about a GLM as defined by 
two component equations. The first is the linearizing (measurement) equation that 
identifies the function g( ) that transforms the expected value of the observed out-
come, µ = ( )E y , into the expected value of the modeled outcome (η):

 η µ= ( )g  (1.10)

Equivalently, we can write µ as a function of η using the inverse4 of the function g:

 µ η= ( ) ( )− −g g1 1= linear prediction function  (1.11)
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16  Interaction Effects in Linear and Generalized Linear Models

For example, in a negative binomial model, g( ) is the natural log, ln( ), and its inverse 
function is g−1( ) = e( ). That is, η µ= ( )ln  and µ = eη.

The second component is the modeling (structural) equation, which specifies the lin-
ear prediction function for the modeled outcome (η). For interaction effects, the 
modeling equation specifies a linear function of the focal and moderating variables 
(F, M1, M2, . . .), their interaction (F × M1, F × M2, . . .), and a set of other predictors 
heuristically represented by Z:

 η = + + + × + + × + +a b F b b F b b F bM M M M Zz1 1 12 3 4 2 5 2 �  (1.12)

Note that η can be the expected value of either an observed or an unobserved out-
come depending on the link function for the specific GLM estimated. For example, 
for OLS, η is the observed outcome, Y; while for binomial logistic regression, η is 
the unobserved outcome, log odds(Y ). This expression is sometimes called the “index 
function.”

(Interaction) Effects in the Modeling Component

I labeled the second equation as the modeling or structural component to emphasize 
that you specify and test your conceptual model of effects in this expression. That 
is, when you test the coefficients, you do not directly test the effect of a predictor 
on the observed outcome, except when the link function g( ) is the identity link. As 
Equation 1.12 indicates, you directly test a predictor’s effect on the modeled out-
come η. When you perform a global test of multiple coefficients, you are thus testing 
whether or not those coefficients are needed in the model predicting the modeled 
outcome η. Thus, the prior material on how to test the statistical significance of an 
interaction applies to testing coefficients in the modeling component, not to testing 
the effects of coefficients on the observed outcome.

Equation 1.12 also means that you can interpret the coefficients for the predictors 
directly as effects on the modeled outcome. For example, take the partial derivative 
of η with respect to F in Equation 1.12 to find the effect of F on η:

 
Effect of on 1 1F b b bM Mη η

=
∂
∂

= + +
F 3 5 2  (1.13)

This is the counterpart to the moderated effect of F in a linear model shown in 
Equation 1.2. The difference is that Equation 1.13 is the effect of F on the mod-
eled outcome and Equation 1.2 is the effect of F on the observed outcome. For a 
GLM with a nonidentity link function, these are not equivalent. As will be discussed 
throughout the book, this can sometimes be advantageous for interpreting interac-
tion effects.

(Interaction) Effects on the Observed Outcome

This does not mean you cannot interpret the effect of predictors on the observed out-
come in a GLM. Rather it means that the estimated coefficients by themselves do not 
describe that effect. To find the effect of a predictor on the observed outcome, you 
need to formulate the expression for the expected value of the observed outcome (µ) 
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Chapter 1 ■ Introduction and Background   17

as a function of the predictors. The effect of a predictor on the observed outcome is 
the partial derivative of that expression with respect to the predictor. Start by writing 
µ as a function of η from Equation 1.11 and then substitute for the linear prediction 
function from Equation 1.12:

µ η= = ( )
= + + + ×

− −

−

g g

g a b F b b FM

1 1

1
1 12 3

( )

(

linear prediction function

MM M M Zb b F bz1 4 2 5 2+ + × + +� )

Using XB b= + +a 1F �  to make the equation more readable gives

 µ = −g 1( )XB  (1.14)

Taking the partial derivative with respect to F gives F ’s effect on the observed out-
come as

∂
∂

= + +( )× ∂
∂

( )−µ
ηF

b b b g XBM M1 1
1

3 5 2

This expression indicates how the effect of F on the observed outcome is related to 
the effect of F on the modeled outcome. The effect of F on the observed outcome is 
equal to F’s effect on the modeled outcome—the first expression in parentheses— 
multiplied by a factor defined by the inverse link function and the coefficients and 
values of every predictor. This makes explicit that the effect of F on the observed out-
come expresses two sources of nonlinearity—that specified by the interaction effect 
and that created by the inverse link function applied to the predictors’ coefficients 
and values. When examining tables or plots of how the effect of F varies with its 
moderators or how predicted outcome values change with F, it is difficult to parse 
out how the patterns represent the nonlinearity of the interaction from how they 
represent nonlinearity induced by the link function. Chapter 5 explores in depth the 
interpretive complications of the presence of these conflated sources of nonlinearity 
and proposes solutions.

ASIDE: NONLINEAR EFFECT OF NONINTERACTING PREDICTOR

When F is not part of an interaction, its effect on the observed outcome is

∂
∂

= ×
∂
∂

( )−µ
ηF

b g XB1
1

The nonconstant effect of F makes the obvious point that there is a nonlinear 
relationship between the observed outcome and F. Not quite as obvious is that 
the effect of F will vary with the values of the other predictors because the mul-
tiplicative factor calculated by g XB− ( )1  depends on those values. This is why the 
predicted value plot from a main-effects-only model seems to show an interac-
tion effect (in case you were wondering, Plot B shows the main effects predic-
tions). The coefficient for age is multiplied by a different factor at different levels 
of education yielding varying effects of F.
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18  Interaction Effects in Linear and Generalized Linear Models

Common Errors in Using Interaction Effects in GLMs

The common errors concerning interaction effects in linear models all apply in 
some fashion when using them in GLMs. The errors in specifying interaction effects 
apply to the specification of the predictors in the modeling component and not 
directly to the observed outcome unless the link function is the identity link. But 
the common errors of interpretation apply to interpreting interaction effects on 
both the modeled outcome and the observed outcome. Beyond these errors, there 
are other pitfalls when interpreting interaction effects for GLMs with nonlinear 
link functions.

Improperly Treating Product Terms for an Interaction
The fact that a noninteracting predictor’s effect gives the appearance of an interaction 
with the other predictors in nonlinear models has led some authors to propose that 
product terms for interaction are not always needed to find and interpret interaction 
effects (e.g., Berry, DeMerit, & Esarey, 2010). This conflates the nonlinear nature of 
the statistical model (link function)—what Nagler (1991, p. 1393) describes as an 
“artifact of the methodology”—with a substantively driven test and interpretation of 
the form of the relationship. Kam and Franzese (2007) describe this as the difference 
between implicit interaction resulting from the form of the link function and explicit 
interaction designed to model hypotheses or expectations. There is a clear and con-
tinuing agreement that product terms are necessary to model and test hypotheses 
about interaction effects in nonlinear models (Berry et al., 2012; Brambor et al., 
2006; Braumoeller, 2004; Kam & Franzese, 2007).

A different error concerning the product terms is partly a software-driven error in 
interpreting the coefficient (and/or its marginal effect) for the product term in isola-
tion from the other components of the interaction. Specifically, the problem occurs 
when statistical software treats the product term as a unique predictor without tak-
ing into account its functional relationship to the component predictors constituting 
the product term (Ai & Norton, 2003; Greene, 2010). It “mechanically computes a 
separate ‘partial effect’ for each variable that appears in the model” (Greene, 2010, 
p. 292), so the partial effect for the product term F × M1 is calculated as the partial 
derivative with respect to the quantity (F × M1): 

 

∂
∂

= ×
∂
∂

( )−µ
η( )F

b g XB
×M1

3
1

 
(1.15)

But what you want is really two different partial effects that involve the product 
term, the partial effect of F when you describe the moderated effect of F, and the 
partial effect of M1 when you interpret the moderated effect of M1:

 

∂
∂

= +( )× ∂
∂

( )

∂
∂

= +( )×
∂

( )

−

−∂

µ
η

µ
η

F
b b M g XB

M
b b F g XB

1 3 1
1

1
2 3

1

 

(1.16)

This has led some authors to interpret the computed partial effect in Equation 1.15 
when it is in fact not a meaningful statistic. Note that the advent of the margins 
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Chapter 1 ■ Introduction and Background   19

command in Stata is specifically intended to avoid this problem. But it does so 
only if the interactions are specified using Stata’s factor-variable notation when 
estimating the GLM.

Limited Range of Moderator Values Used  
to Probe Moderated Effect of Focal Variable
Too often, the interpretation of the effect of F discusses its value calculated across a 
restricted range of the values of its moderators (see the review of published studies in 
Brambor et al., 2006). Doing so may conceal substantively important—and some-
times unexpected—variation in F ’s effect. Technically, this point applies to both 
linear and nonlinear models, but this limitation is much more consequential for the 
effect of F on the observed outcome in nonlinear models because the link function’s 
nonlinearity affects the calculation of F ’s effect. With limited comparison points, it is 
more difficult to separate out how much of the difference in F ’s effect represents the 
explicit interaction by the moderator from how much is the nonlinearity of the link 
function. Thus, a recurring recommendation in the didactic literature is to examine 
how the effect of F changes with its moderator(s) across a substantively meaningful 
range of the moderators’ values (Aiken & West, 1991; Brambor et al., 2006; Hayes, 
2013; Kam & Franzese, 2007).

Comparing Estimated Coefficients  
Across Nested Models (for Some GLMs)
Typically, the reason to compare a predictor’s coefficient across nested models for 
the same sample is to examine how other factors mediate (explain) the influence of 
that predictor by adding predictors in stages. In some GLMs, the model is identi-
fied by setting a fixed value for the error variance of a latent outcome. This results 
in coefficients that are identified only up to a multiplicative scaling factor (Long, 
2009, pp. 47, 122–123; Maddala, 1983, p. 23). But the total variance of the (latent) 
outcome is not fixed as it would be for an observed outcome. Rather, it is the sum 
of the explained variance and the fixed value of the error variance. The problem is 
that the explained variance must increase as predictors are added to the model, even 
if minutely, which results in a larger total variance and hence a bigger scaling factor 
for the coefficients. Consequently, it is not unusual for the estimated coefficients 
to increase across stages of the nested model. Because the estimated coefficient can 
change solely due to the scaling factor changing, you cannot compare the coefficients 
across the nested models to examine how they are mediated by the other factors nor 
attribute such changes to suppressor effects.

The simplest and commonly recommended solution is to examine changes in  
y-standardized coefficients, defined as the coefficient divided by the estimated stan-
dard deviation of the latent outcome (Long, 1997; Mare & Winship, 1984; Mood, 
2010; Williams, 2013). Because the coefficients at each stage are standardized by 
the latent outcome’s changing standard deviation, it counters the differences in the 
scaling of the estimated coefficients on the condition that the sample analyzed must 
be the same at each stage. Other solutions include comparisons using predicted prob-
abilities or functions of the predicted probabilities (Long, 2009, 2016) or techniques 
to decompose effects (Buis, 2010; Kohler, Karlson, & Holm, 2011). Note that this 
concern is not specific to interaction coefficients but applies to any coefficient in 
nested models.
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20  Interaction Effects in Linear and Generalized Linear Models

ASIDE: MODERATED EFFECTS VERSUS MEDIATED EFFECTS

The discussion of comparing coefficients across models introduced the idea of 
the mediation of an effect that is sometimes confused with the moderation of an 
effect. A mediation analysis (also known as path analysis) seeks to understand 
the causal process through which a predictor X affects a penultimate outcome 
Y, drawing a distinction between its direct causal effect and its indirect causal 
effect. Conceptually, X’s indirect (mediated) effect is how X affects Y through its 
causal effect on other causes of Y. That is, the indirect effect is how X affects 
intermediate outcomes (Z), which in turn have their own direct effects on Y. This 
is often described as Z mediates (explains) some or all of the total effect of X on Y.

In contrast, a moderation or interaction analysis does not necessarily adopt 
a causal analysis framework. Rather, it focuses on how the effect of X on Y is 
contingent on (varies with) other predictors (Z) in the analysis. This is commonly 
labeled as Z moderates the effect of X on Y. It is possible to have a model that 
specifies that X’s effect on Y is both mediated and moderated by other predic-
tors in the model. (For an excellent introduction to mediation and moderation 
analysis in OLS regression, see Hayes, 2013.)

DIAGNOSTIC TESTING  
AND CONSEQUENCES OF  
MODEL MISSPECIFICATION
Before deciding to include and interpret interaction effects, you should always con-
duct diagnostic tests of model fit and the validity of the modeling technique’s assump-
tions for your data. Model misspecification can create the appearance of interaction, 
and vice versa (Aiken & West, 1991; Fox, 2008, p. 274; Greene, 2008, pp. 166–167; 
Kaufman, 2013, pp. 22–23). In this section, I first describe diagnostic tests that apply 
broadly to GLMs: testing the link function, assessing model fit/departures, residual 
analyses for model misspecification, and analysis of influential cases. I then discuss 
the consequences of misspecifying interaction effects. In each application chapter,  
I discuss additional diagnostic tests applicable to that specific GLM.

Diagnostic Testing

Link Function Test
The usual way to assess the appropriateness of the link function is by an added vari-
able analysis (Hardin & Hilbe, 2012, p. 55). Specifically, you construct the predicted 
value of the index function and its square and then estimate your model with those 
two variables. The significance test for the squared term’s coefficient provides an 
assessment of the adequacy of the link function. If the coefficient is not significant, 
you would conclude that the link function is appropriate. But if it is significant, you 
should consider alternative link functions. You can also directly compare two differ-
ent link functions (for details, see Hardin & Hilbe, 2012, pp. 50–51), but to the best 
of my knowledge this is not often done.

Assessing Overall Model Fit/Departures
A plot of the standardized deviance residuals against the predicted value of the index 
function provides a nonspecific diagnostic for systematic departures from the model. 
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Chapter 1 ■ Introduction and Background   21

By nonspecific, I mean that it does not identify the potential source(s) of the prob-
lem, only that there is evidence that the model fit is not adequate. A well-fit model 
should show no pattern or trend of the residuals against the predicted index function. 
If the plot shows a pattern, this indicates a problem with the fit of the model but is 
not informative about why. Thus, if you find a pattern, you should follow up using 
the next two diagnostic tests to try to find and correct the sources of the lack of fit.

Residual–Predictor Plots or Partial Residual–Predictor Plots

A residual–predictor plot can help identify if a predictor is creating poor model fit 
because its functional form is not properly specified. If the plot shows a pattern of the 
residuals changing with a predictor, it indicates you may need to consider alternative 
functional forms for the predictor. The pattern you see is net of the predictor’s effect 
in the current model, so it typically represents departures from a linear relationship 
and can help you decide what type of change to make. It is usually easier to deter-
mine an alternative functional form if you create a partial residual–predictor plot 
because the pattern you see is not net of the predictor’s effect in the model; that is, 
the pattern you see is the pattern you want to reproduce with an alternative func-
tional form. For a given predictor, you create the partial residual by subtracting the 
predictors’ effect as specified in the index function. For instance, for a current model 
predictor with a 

 

Line r effect,

Quadratic eff

a Partial residual sidual j= − ×Re b xx j

eect, Partial r si ual siduale d j j
j

= − × − ×Re b x b xx xj
2

2

 
(1.17)

In principle, such plots could provide information relevant to identifying interaction 
effects. If two noninteracting predictors each exhibit departures from good model 
fit, this might suggest a missing interaction effect, but other model misspecifications 
could also produce that result. If you create separate plots for selected values of one 
of the predictors in which you plot the residual or partial residual against the other 
predictor, you may be able to discern an interactive pattern—that is, different slopes. 
You could also try using a three-dimensional (3D) scatterplot of the residual against 
the two interacting variables. But in practice either of these plots can be difficult to 
examine and to discern interaction effects (Fox, 2008, pp. 284–286). They are useful 
primarily for a two-variable interaction when one of the variables is categorical or  
has very few interval values. Otherwise, you have to group an interval variable—
potentially collapsing across important changes—and need a large sample size to 
have sufficient cases in the subsamples’ separate plots. If your model has two modera-
tors and/or a three-way interaction, you would have to create separate plots for each 
combination of values of the two moderators.

Residual–Omitted Variable Plots
In any analysis, it is always possible that you omitted a relevant predictor that, if corre-
lated with predictors in the model, would manifest as poor model fit in the prior types 
of residual plots. A convenient way to determine if a predictor that is not in the model 
potentially should be included is to plot the residual against any omitted predictors; 
a systematic patterning of the residuals by the predictor would indicate its inclusion 
in your model. Alternatively, you could formally test this by adding potential omit-
ted predictors to your model and conduct standard statistical tests of whether or not 
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22  Interaction Effects in Linear and Generalized Linear Models

the added predictor(s) have significant effects. This diagnostic tool presumes that you 
have measures of the omitted predictors. In my experience, the main reason for an  
omitted–predictor bias is that you do not have measures to use in the analysis.

Analysis of Influential Cases
Influential cases are those observations in the estimation sample that have both high 
leverage values and large residual values. Leverage values measure the distance of an 
observation’s values for the predictors from the typical values in the sample (Fox, 
2008, pp. 245, 412; Long, 1997, p. 100; Pregibon, 1981, p. 706). Because cases with 
high leverage values are unusual relative to the average case in terms of the predic-
tors, they have the potential to affect coefficient estimates especially if a high lever-
age values case has a large residual. This is particularly concerning for interaction 
analysis because such cases can “pull” coefficient estimates toward their effects on 
the outcome. In some instances, this can produce a significant interaction effect that 
is absent if the sample excludes the influential cases.

Although separate analyses of leverage values and of residuals can be somewhat infor-
mative about influential cases, the better choice is to use a direct measure of influ-
ence. Perhaps, the most common summary indicator of influence for linear models 
is Cook’s distance measure (see Belsley et al., 1980, for an alternative summary indi-
cator as well as coefficient-specific influence measures). For the ith observation, you 
calculate the sum of the squared change in the predicted value of every observation 
between the model estimated with the full sample and a model reestimated without 
case i, and normalize it by the product of the sample mean of y and the mean squared 
error of the regression (Fox, 2008, p. 250). Note that Cook’s distance measure is 
computationally intensive since it requires reestimating the model for every observa-
tion in your estimation sample.

For GLMs, Pregibon’s (1981) approximation of Cook’s distance measure is the most 
commonly recommended diagnostic (e.g., Fox, 2008, pp. 245, 412; Hardin & Hilbe, 
2012, p. 49; Long, 1997, p. 101). The approximation does not require reestimat-
ing the model for every observation; instead it estimates how much each coefficient 
would change without the ith case in the analysis:

 
C Vari i i= ( ) ( )( )∆ ∆β β β� � � �’

 (1.18)

where

∆ = ( ) −
−

=i i
i i

ii
iVar x

y y
h

xβ β� ��
1

, column vector of predictor values ffor case i,

Var� � �β β( ) = −variance covariance matrix of

and

h y y x Var xii i i i i= −( ) ′ ( )� � � �1 β

The usual criterion for defining a case as problematic is C
n ki > − −

4
1

.  You should 

reestimate your model to decide if the excluded case(s) in fact change your results in 
a meaningful way and finalize your sample before interpreting the interaction effects.
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Chapter 1 ■ Introduction and Background   23

Consequences of Model Misspecifications

Keep in mind that we never know with certainty the correct specification of the 
model. If the decision about whether or not to include an interaction specification 
in your model is not clear-cut, you need to make a decision balancing between two 
types of model misspecifications and their consequences. First, what happens to your 
model estimates and results if you include an interaction specification when in reality 
it is not needed, and second, what are the consequences when you exclude an inter-
action specification when in actuality it is needed. Last, an area of ongoing debate is 
the effect of unspecified heterogeneity on the estimation and interpretation of group 
differences—the relationship between the outcome and a categorical predictor—and 
how to deal with it. This issue is relevant to the interaction analysis if one or more of 
your interacting predictors is categorical, which is fairly common.

Including an Interaction Specification When Not Needed
This is a specific instance of the inclusion of irrelevant predictors of any kind in 
the model. In linear models, it is well-established that the consequence of includ-
ing superfluous predictors is to increase the standard errors of the coefficients, but 
the coefficient estimates remain unbiased (Greene, 2008, p. 136). Thus, there is 
some loss of efficiency but not a problem of bias. The increase in coefficient stan-
dard errors also applies to GLMs. But if a GLM has a nonlinear link function, 
then the coefficient estimates are not necessarily unbiased. Many of the commonly 
used GLMs can identify the estimated coefficients only up to a multiplicative scale 
factor, usually the standard deviation of a latent interval outcome (e.g., logistic 
regression, probit analysis, ordinal regression models, multinomial logistic regres-
sion [MNLR]). As a number of authors have pointed out (Allison, 1999; Mood, 
2010; Williams, 2009), the scaling factor increases as predictors are added to the 
model. Consequently, the estimates of all the coefficients are biased by the inclusion 
of a superfluous predictor—such as a product term for an interaction when it is not 
needed—because they are scaled by an incorrect factor. This situation is analogous 
to the problem of comparing coefficients across nested models discussed above, 
so the same solutions apply. For example, if you use y-standardized coefficients 
to interpret your results, then you remove the bias introduced by the scaling fac-
tor. The inefficiency of the estimates (increased standard errors) remains a concern 
regardless of the type of GLM model you estimate, but it is not always consequen-
tial in terms of significance testing and interpretation, particularly if you have a 
large sample size.

Excluding an Interaction Specification That Is Needed
This is a special case of the general problem of omitted variable bias that has a simi-
lar consequence for linear and nonlinear models. In linear models, the coefficients 
for the other predictors are biased and inconsistent unless the omitted variable is 
uncorrelated with the included predictors. (Note that a lack of correlation with the 
omitted variable would be unusual when the omitted variable is a product term of 
included predictors.) However, in GLMs with nonlinear link functions, the coeffi-
cients for the other predictors are always biased and inconsistent even if the omitted 
variable is uncorrelated with the included predictors (Greene, 2008, p. 787). And 
for those GLMs whose coefficients are multiplicatively scaled to an identifying fac-
tor, the scaling factor is also biased. Moreover, these biases affect the calculations 
used in a variety of techniques to calculate and probe the relationship of interacting 
or noninteracting predictors to the outcome, such as marginal and discrete effects, 
predicted outcomes, and odds ratios.
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24  Interaction Effects in Linear and Generalized Linear Models

As with linear models, the potential consequences of excluding relevant interaction 
terms is worse than the consequences of including superfluous interaction terms for 
GLMs. That is, your main concern if you include an extraneous interaction term is 
that your standard errors will be too large, and you will have to be careful to properly 
take into account the scaling factor bias when interpreting coefficients—which is no 
easy task. In contrast, if you exclude a relevant interaction term, your coefficients and 
subsidiary calculations will definitely be biased in an unknown direction. The rational 
decision in this case would be to err on the side of inclusion of interaction terms when 
in doubt. The consequence of biased estimates of other coefficients is more certain if 
you incorrectly exclude the interaction terms than if you incorrectly include them.

Unspecified Heterogeneity and Group Comparisons
A key assumption for GLMs is that the variance function must be a function solely of 
the mean of the outcome (Hardin & Hilbe, 2012, p. 11). Implicit in this assumption 
is that there is no additional heterogeneity (heteroscedasticity) in the variance among 
the sample cases. For linear models, the presence of unspecified heteroscedasticity 
results in inefficient but unbiased (or consistent) coefficient estimates. The conse-
quences are more serious in GLMs with nonlinear link functions if the unspecified 
heteroscedasticity is related to any of the model predictors, leading to biased and 
inconsistent coefficient estimates.

One situation in which heteroscedasticity related to the predictors is plausible, if 
not likely, is when comparing the outcome across social categories or social groups 
(Kaufman, 2013, p. 8); that is, when you use a categorical predictor, whether part 
of an interaction specification or not. This creates a problem akin to the comparison 
of coefficients across nested models (Allison, 1999; Mood, 2010; Williams, 2009). 
Making group comparisons is like comparing a coefficient between nested models; 
the comparison is confounded with the unspecified group heteroscedasticity. There 
is an ongoing debate over how to solve this problem and no resolution yet (Allison, 
1999; Buis, 2010; Kohler et al., 2011; Kuha & Mills, 2018; Long, 2009, 2016; Mood, 
2010; Williams, 2009, 2013). Some simulations have shown that using an incorrect 
heteroscedasticity specification is worse than not adjusting for heteroscedasticity at 
all (Keele & Park, 2005), while Kuha and Mills (2018) recently argued that the 
concerns are often irrelevant. Thus, as Williams (2013) put it, “At this point, it is 
probably fair to say that the descriptions of the problems with group comparisons 
may be better, or at least more clear-cut, than the various proposed solutions” (p. 11).

This issue reemphasizes the value of the diagnostic testing discussed above to check 
for problems in the fit of the model to the data and to make modeling changes 
accordingly. For example, Williams’s (2010) reanalysis of Allison’s (1999) example 
demonstrated that adding the square of a predictor corrected for the apparent het-
eroscedasticity and made moot any concern over confounding of group differences 
and heteroscedasticity in that analysis. This further points to the importance of mod-
els well-grounded in theory and formulated with careful consideration of the appro-
priate functional form of predictors.

ROADMAP FOR THE REST OF THE BOOK
Overview of Interpretive Tools and Techniques

My approach to understanding interaction effects involves producing and interpret-
ing three types of information to understand the relationship between the outcome 
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Chapter 1 ■ Introduction and Background   25

and the interacting predictors. I detail the principles of this approach in Part I and 
apply them to different GLMs in Part II. I briefly describe the three sets of informa-
tion here, labeling them with the names of the ICALC tool (command) that you use 
to calculate and create that information. For a paper or a presentation, you would 
usually include only a fraction of this information. The complete set is intended to 
help you fully understand the nature of the interaction effects and to provide you 
with different options for what you present and discuss. I use the heuristic device of 
declaring one of the interacting predictors as the focal variable and the other(s) as 
the moderating variable(s), but a proper interpretation should treat each interacting 
predictor in turn as the focal variable.

Defining the Moderated Effect of F With  
the GFI (Gather, Factor, and Inspect) Tool
The building block for understanding the nature of the interaction effect is to find 
the algebraic expression for the effect of the focal variable on the “modeled” outcome. 
You use this to describe and probe the basic structure of the focal variable’s relation-
ship to the outcome. With the GFI tool, you can determine if and when the focal 
variable’s effect changes sign (positive to negative or negative to positive) as it varies 
with the values of the moderators. And you can create a visual representation of the 
algebraic expression with a path diagram–like graphic.

Calculating the Varying Effect of F and Its Significance: SIGREG 
(Significance Regions) and EFFDISP (Effect Displays) Tools
In probing the nature of the interaction effect, we are invariably interested in more 
than whether the moderated effect of F changes sign. Typically, we want to know the 
magnitude of the effect at different values of the moderator(s) and where that effect is 
significantly different from zero. The SIGREG tool finds, where possible, an analytic 
solution to define the range of moderator values for which F ’s effect on the modeled 
outcome is significant. It also produces an empirically derived significance region 
table for which it can calculate effect values and significance for alternative types 
of effects when applicable—factor changes or any of the SPOST13 marginal effects 
calculated by its mchange command (see Long & Freese, 2014, pp. 166–171).

These tables are optionally saved to an Excel file with cell formatting to identify and 
highlight sign and significance changes. The EFFDISP tool creates visual counter-
parts to the significance region tables produced by SIGREG, plotting information 
about the varying magnitude and optionally the significance of the focal variable’s 
moderated effect. Multiple plots are produced if there is more than a single modera-
tor or if the focal variable is categorical with more than two categories.

The Predicted Outcome’s Value Varying With the Interacting 
Predictors: The OUTDISP (Predicted Outcome Displays) Tool
Tables or graphs that display the predicted values of the outcome are probably the 
most familiar, and in some ways the most understandable, way to present and inter-
pret interaction effects. Earlier in this chapter, I introduced the problem that such dis-
plays confound the nonlinearity of the interaction with the nonlinearity of the GLM 
link function, and I discuss this in detail in Chapter 5. I propose alternative visual 
displays to deal with this confounding that you can create using the OUTDISP tool.

Is the ICALC Toolkit Necessary?
Stata users might wonder whether the ICALC toolkit is really necessary given 
the capabilities of the margins and marginsplot commands in Stata for producing 

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



26  Interaction Effects in Linear and Generalized Linear Models

information about interaction effects. Part of the reason I created ICALC is that the 
output created by two of the tools cannot be produced from the margins or mar-
ginsplot commands. GFI provides basic information about the pattern of the focal 
variable’s effect, while SIGREG identifies significance regions for the focal variable’s 
effect. Some of the basic output from ICALC for creating the content of tables of the 
moderated effect (SIGREG), graphics of the conditional effects (EFFDISP), or pre-
dicted outcome values (OUTDISP) can in some form be produced by the margins or 
marginsplot commands. But the ICALC toolkit provides types of tables, graphs, and 
options not available through the Stata commands.

Moreover, it reports results that are more compact and simpler to read and uses an 
interface that is hopefully more user-friendly in much the same way as are the post-
estimation results produced by SPOST13.5 A major advantage of the ICALC toolkit 
for readers of this book is that the examples and applications throughout the book 
use ICALC to produce the results, with annotated explanations of the use of the 
commands in the application chapters.

For analysts who prefer platforms other than Stata for producing tables and graphics, 
the ICALC toolkit includes options to save the necessary results to an Excel file that 
can be easily imported into other applications. It will save formatted tables that users 
can reformat directly in Excel or copy and paste the Excel table into another applica-
tion. For graphics, ICALC saves the data values used to create the Stata figures in a 
rectangular data format—a column for the x-axis values/categories, one or more col-
umns for the corresponding y-axis values for each graphed data series, and columns 
for the variables defining separate graphics for subsamples (if any).

Organization and Content of Chapters

Part I (four chapters) describes and explains the principles of interpretation. Part II 
(seven chapters) provides detailed applications of the principles and the ICALC tool-
kit to a set of commonly used GLMs and ends with a discussion of extensions.

Part I: Principles
Chapter 2: Basics of Interpreting the Focal Variable’s Effect in the Modeling 
Component. This chapter focuses on the derivation and interpretation of the alge-
braic expression for the moderated effect of the focal variable on the modeled out-
come; that is, F ’s effect contingent on one or more moderators. The emphasis is on a 
holistic interpretation of the moderated effect rather than interpreting the component 
coefficients. It introduces a simple mathematical analysis to determine if and under 
what conditions (values of the moderators) the sign of F ’s effect changes from positive 
to negative, or vice versa. And it demonstrates the use of plots of the moderated effect 
of F against the predictors to help understand and interpret the changing sign and 
magnitude of F ’s effect.

Chapter 3: The Varying Significance of the Focal Variable’s Effect. In this chap-
ter, I discuss how to define the significance region for the moderated effect of F. That 
is, three ways to determine the ranges of the moderators’ values for which F ’s effect is 
statistically significant are as follows:

• Johnson-Neyman analytically defined boundary values, which mark the 
boundaries between significance and nonsignificance
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Chapter 1 ■ Introduction and Background   27

• Empirically derived significance region tables reporting F ’s effect and its 
significance for user-specified moderator values

• Plots of F ’s effect against the moderators with confidence intervals 
demarcating significance regions

Depending on the specific GLM, the last two approaches can be applied to various 
effects calculated from the moderated effect of F, such as factor changes or discrete 
changes.

Chapter 4: Linear (Identity Link) Models: Using the Predicted Outcome for 
Interpretation. This chapter and the next cover the nitty-gritty of how to create and 
interpret tables and plots of the predicted outcome to understand and explain the 
pattern of the relationship of the interacting predictors with the outcome. I discuss 
the simpler case of GLMs with an identity link function (e.g., OLS regression) in 
this chapter to lay a foundation for the more complicated application to nonlinear 
link functions in Chapter 5. Topics include options for choosing display and refer-
ence values for the interacting predictors, reference value options for noninteracting 
predictors, and the use and interpretation of predicted value tables, charts, and plots.

Chapter 5: Nonidentity Link Functions: Challenges of Interpreting Interactions 
in Nonlinear Models. This chapter continues the discussion of the use of predicted 
outcome values. I detail why the approach to interpreting predicted values for identity 
link functions presented in Chapter 4 is potentially problematic for nonlinear link 
functions. I revisit the topic of how to choose reference values for other predictors, 
and then describe and demonstrate the use of three options for handling these prob-
lems when creating and interpreting a predicted values table or graphic.

Part II: Applications
Chapter 6: ICALC Toolkit: Syntax, Options, and Examples. In this chapter, I 
describe the ICALC toolkit, explain the syntax and options for using the tools, and 
provide brief examples of how to apply the five ICALC commands. The INTSPEC 
command must be run before any of the other commands to save and set up infor-
mation about the nature of the interaction specification and display/reference values 
of the predictors. The other four commands do the calculations and create tables 
and graphics corresponding to the approaches to interpretation described in the 
Part I principles chapters: gather, factor, and interpret (GFI), significance regions 
(SIGREG), effect displays (EFFDISP), and outcome displays (OUTDISP).

Chapters 7 to 11: Applications to Frequently Used GLMs. Each technique-of-
analysis chapter has the same basic structure. It begins with an overview of the types 
of data situations for which the technique is typically used and brief descriptions of 
published examples from multiple disciplines (sociology, political science, economics, 
criminology, and public health). I chose the examples to illustrate the variety of actual 
applications, concentrating on publications in disciplinary flagship journals. For the 
most part, I chose the first examples that I found using search engines, excluding those 
with egregious errors of estimation or interpretation. This overview is followed by a 
discussion of the technique’s properties as a GLM, the relevant ways to interpret coef-
ficients, technique-specific diagnostics tests, and a brief description of the data used 
for the application examples. The bulk of each chapter demonstrates the application 
of the ICALC commands to different specifications of interaction effects and how to 
interpret the results and output for that specification. Each chapter has at least one 
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28  Interaction Effects in Linear and Generalized Linear Models

single-moderator empirical example and one multiple-moderator or three-way inter-
action empirical example. The interpretations always treat each interacting predictor 
in turn as the focal variable. Many of the chapters conclude with a special topics sec-
tion. The organization of the application chapters is as follows:

• Chapter 7: Linear Regression Model Applications

• Chapter 8: Logistic Regression and Probit Applications

• Chapter 9: Multinomial Logistic Regression Applications

• Chapter 10: Ordinal Regression Models

• Chapter 11: Count Models

I have organized the application chapters in the order in which I think they should 
be read. Certainly, readers should first review Chapter 6 on the use of the ICALC 
toolkit, and then read Chapter 7 on OLS regression even if they do not intend to use 
it because there is foundational material woven into the chapter. In a similar vein, 
readers should be familiar with the applications in Chapter 8 before they read about 
multinomial logistic or ordinal probability models in Chapters 9 and 10.

Table 1.3 presents a simple rubric for knowing when to consider using each of the 
GLM models in Chapters 7 to 11. This rubric uses the level of measurement of the 
outcome—nominal/categorical, ordinal, and interval/ratio—and the number of cat-
egories (values) in the outcome measure to identify when to choose each technique. 
There is additional discussion in each chapter of the circumstances and diagnostic 
tests that might preclude using these recommendations of a technique.

Chapter 12: Extensions and Final Thoughts. In this chapter, I provide very brief 
extensions to the use of ICALC for the interpretation of interaction effects in three 
additional analytic techniques—Tobit analysis, the Heckman selection model, and 
the Cox proportional hazards model for survival analysis—and the interpretation 
when one of the interacting predictors is a quadratic function. I end with a brief 
reminder about important dos and don’ts and cautions in specifying and interpreting 
interaction effects.

TABLE 1.3   RUBRIC FOR CHOOSING GENERALIZED LINEAR  
MODEL TECHNIQUE

Technique Type of Outcome Measure

Linear regression Interval or ratio variable

Binomial logistic regression 
and probit analysis

Categorical with two categories

Multinomial logistic 
regression

Categorical with three or more unordered 
categories

Ordinal regression models Categorical with three or more ordered categories

Count models Nonnegative integers representing a count of 
events
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CHAPTER 1 NOTES
1. See Section “Mathematical (Geometric) Foundation for GFI” in Chapter 2 for a more 

detailed discussion.
2. Suppose you are using a significance level of .05. The reason to correct the significance level 

is that the probability that one or more coefficients will be significant is greater than .05 
and increases with the number of multiple tests.

3. For some estimation methods, the Wald test is an F1,df test statistic and the single-coefficient 

test is a tdf statistic. Because t Fdf df
2

1= , , you get the same test result from either. Similarly, for 

other estimation methods, the Wald test is a χ( )1
2  test statistic and the single-coefficient test 

is a z statistic. Because z 2
1
2= χ( ), you again get the same test result. Given this equivalence, 

some sources, including Stata, also identify the z and t tests of coefficients as Wald tests.
4. The Oswego City School District Regents Exam prep site has a great explanation of the 

inverse of a function (http://www.regentsprep.org/regents/math/algtrig/atp8/inverselesson 
.htm):

“A function and its inverse function can be described as the ‘DO’ and the ‘UNDO’ 
functions. A function takes a starting value, performs some operation on this value, 
and creates an output answer. The inverse function takes the output answer, performs 
some operation on it, and arrives back at the original function’s starting value.”

5. Long and Freese (2014) provide a similar argument for a parallel issue raised concerning 
SPOST13 and give an example in which SPOST13 produces 50 lines of well-formatted 
output compared with more than 1,500 lines of output from the corresponding margins 
command (http://www.indiana.edu/~jslsoc/web_spost13/sp13_whymstar.htm).
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