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7
LINEAR REGRESSION 

MODEL APPLICATIONS

Because this is the first application chapter, let me preview the basic structure and 
content that each application chapter has. I introduce the estimation technique 

by describing the situations and types of data for which the technique is appropriate 
and commonly used. I next summarize the properties that identify it as a GLM and 
discuss the meaning of the modeled outcome and its metric if they are different from 
the observed outcome. I then identify key diagnostic procedures, and I end the intro-
duction with a note concerning the source of the data for the application examples. 
The remainder of the chapter is typically two start-to-finish application examples:  
(1) a single-moderator example and (2) a multiple-moderator and/or three-way inter-
action example. Each application example begins with a description of the dependent 
and independent variables and an overview of the results of diagnostic procedures 
and tests of the statistical significance of the interaction effects.

To briefly review, each GLM is built around a linear function of a set of predictors; 
that is, a sum of coefficients multiplied by predictors. The predictors may include 
interval variables, polynomials or other functions of an interval variable, categorical 
variables expressed as a set of binary indicators, and/or sets of predictors multiplied 
together (i.e., interaction terms). A specific GLM is distinguished by two key proper-
ties. The link function mathematically defines the transformation of the linear func-
tion of the predictors into the expected value of the outcome variable Y. Equivalently, 
we use the inverse of the link function, which describes the modeled outcome as a 
mathematical function of the observed outcome. The second distinguishing property 
is the conditional distribution function, which characterizes the probability distribu-
tion of the outcome conditional on the predictors.

OVERVIEW
Properties and Use of Linear Regression Model

Data and Circumstances When Commonly Used
Linear regression models (LRMs) are typically appropriate choices for analyzing 
interval or ratio outcome measures for which the mean of the outcome conditional 
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246  Part II ■ Applications

on the predictors can be described by a linear function of the predictors. Note that 
the predictors can include categorical variables or a nonlinear function of a pre-
dictor, such as a polynomial or logarithmic expression, as well as interaction terms 
represented by the product of two or more predictors. But there are interval or ratio 
outcome measures for which an LRM can be a problematic choice. These include 
truncated or censored outcomes, badly skewed outcomes, mathematically bounded 
outcomes (e.g., a proportion), and count outcomes. A solution sometimes employed 
is to find a transformation of the outcome that makes an LRM appropriate (see Fox, 
2008, chap. 4; Kaufman, 2013, chap. 3). The other, more common solution is to use 
a different member of the GLM family appropriate to the data situation.

Published Examples.

• Auspurg, Hinz, and Sauer (2017) used generalized least squares regression 
to analyze the fairness of baseline pay as portrayed in a series of vignettes 
to test theories of justice evaluation. Among other interactions, they tested 
whether the effect of the gendered pay ratio of respondents’ job is moderated 
by whether respondents evaluate a man’s base pay or a woman’s base pay. 
They interpreted the interaction by describing how the focal variable’s effect 
changed.

• In a two-stage least squares analysis of countries’ tax revenues in the early 
modern era, Karaman and Pamuk (2013) estimated a three-way interaction 
between war pressure, urbanization, and regime representativeness. They 
created and interpreted a table of predicted tax revenues at selected values of 
urbanization and of real and hypothetical regime type.

• Cortes and Lincove (2016) studied the college admissions fit of student 
applicants (probability of a mismatch) using OLS regression and found 
an interaction between the applicants’ high school class rank and their 
race/ethnicity. They discussed the interaction coefficients to interpret the 
interaction effect.

• Using OLS regression, Rambotti (2015) reanalyzed prior country-level 
research of the effect of income inequality and poverty on life expectancy 
to add a two-way interaction between income inequality and poverty. 
Rambotti interpreted the interaction by discussing predicted life expectancy 
plotted against inequality for low- and for high-poverty countries.

GLM Properties 
The LRM is a GLM with an identity link function—Y equals the linear function of 
the predictors without a transformation of the prediction function—and a normal 
(Gaussian) conditional distribution function. In this instance, the modeled outcome 
is identical to the observed outcome. The LRM is a class of models with these char-
acteristics, which are further differentiated by the assumptions they make about the 
error terms. OLS assumes that the error terms are normally distributed with equal 
variance (homoscedasticity) and zero covariance/uncorrelated errors (Greene, 2008, 
p. 111). Other models in this class relax the assumption of equal variance and/or 
zero covariance.1 Common examples include WLS, which allows for a nonconstant 
error variance; time-series models, which usually specify autocorrelated errors; panel 
models; and least squares with robust standard errors, which may permit both cor-
related errors and unequal error variances. The empirical applications in this chapter 
use OLS in the two-moderator example and WLS in the one-moderator example.
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Chapter 7 ■ Linear Regression Model Applications  247

Diagnostic Tests and Procedures
The diagnostic tests that I reviewed in Chapter 1 can all be used for LRMs. Plotting 
the residuals (typically studentized residuals) against the predicted outcome and 
against individual predictors provides an evaluation of overall model fit and possible 
model misspecification. These are essential for limiting the possible influence of a 
misspecified model on testing for and estimation of interaction effects. Similarly, 
such residual plots, leverage analysis, and influence statistics can help identify poten-
tial influential outliers to examine. There are also numerous tests of the assump-
tions of homoscedasticity and uncorrelated errors specific to OLS regression, panel 
models, and time-series analyses (for details, see Greene, 2008, chaps. 8, 9, and 19, 
respectively). Last, checking for collinearity among the predictors—apart from the 
necessary functional collinearity among interaction terms—is also standard.

Data Source for Examples

Both application examples use data from the 2010 GSS; the Stata data file (GSS_2010.
dta) can be downloaded at www.icalcrlk.com, as can the Stata do-files used for the 
examples.

SINGLE-MODERATOR EXAMPLE
Data and Testing

The dependent variable is the frequency of sexual intercourse per month. The pre-
dictors consist of four interval measures (age in years, SES, number of children, 
and frequency of attending religious services) and two nominal measures (female-
identified and never married status), each represented by a dummy variable. Both 
the frequency of sex and attendance at religious services were recoded from ordinal 
categories to a monthly frequency by annualizing the response category and dividing 
by 12.2 The sample was restricted to respondents aged over 24; an additional 431 
cases were excluded due to missing information on one or more of the variables.3 
Diagnostic testing indicated no outliers or influential cases but did suggest the pres-
ence of heteroscedasticity. A WLS regression was successful in correcting for het-
eroscedasticity and is used throughout the example. A sensitivity analysis showed no 
appreciable differences in the results reported for this example from using WLS versus 
OLS versus OLS with robust standard errors versus an OLS analysis of a variance- 
stabilizing transformation of the outcome (square root). Moreover, I treat the out-
come measure of sexual intimacy as continuous to provide an example of a WLS 
analysis with heteroscedasticity, even though it has a limited number of observed 
values from the underlying continuous measure. Although doing so is somewhat 
contrived, the results are robust to alternative estimation choices and operationaliza-
tions of the outcome (negative binomial regression or ordinal logit).

The model includes an interaction between age and SES, conceptually justified by 
the expectation that the well-established negative effect of age on sexual activity 
would be diminished by the knowledge and resources available to those with higher 
SES. The WLS regression results report a t statistic for the interaction coefficient of 
3.75 (p < .001). This indicates that the coefficient for the age-by-SES product term 
is statistically significant. Although the main effect coefficients for age and SES are 
each significant, this is not useful information in this case because 0 is not a valid 
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248  Part II ■ Applications

value for either predictor. It is not meaningful to know that the effect of SES is sig-
nificant for respondents who are 0 years old or that the effect of age is significant for 
respondents with SES = 0.

In the following sections, I cover the interpretation of the effect of age as moder-
ated by SES and then the effect of SES as moderated by age, applying in turn the 
ICALC tools. The ICALC command lines are bolded in the Stata output for ease of 
identification.

The Effect of Age Moderated by SES

Setup With INTSPEC Tool
The first step is to use intspec to define the interaction details for the other tools:

. intspec focal(c.age) main( (c.age, name(Age) range(25(10)85)) ///
>         (c.ses, name(SES) range(17(10)97))) int2(c.age#c.ses) sumwgt(no)

Interaction Effects on Sexfrqmonth Specified as
-------------------------------------------------------

     Main effect terms: age  ses 
     Two-way interaction terms: c.age#c.ses 

  These will be treated as: Focal variable = age (“Age”)
    moderated by interaction(s) with
        ses (“Ses”)

Always check the output from intspec to verify that the interaction information is 
correct before proceeding to apply the other tools. The options/information specified 
are as follows:

• focal( ) declares age as the focal variable.

• main( ) contains the variable names of the main effect variables (c.age 
and c.ses) and their display names for the output, and range( ) lists the 
values used for display and/or calculation. The range specification for 
age—25(10)85—specifies that age’s display values range from 25 to 85 in 
increments of 10. The range for SES is 10 to 97 in steps of 10.

• int2( ) specifies the variable name of the two-way interaction term c.age 
#c.ses.

• sumwgt(no) tells ICALC not to use the weights specified on the estimation 
command when calculating summary statistics. This is crucial when your 
weights are analytic weights because the Stata margins command automatically 
uses the weights even when not listed in the margins command syntax unless you 
explicitly tell it not to do so.

GFI Analysis
We start with the GFI tool to identify and extract the expression defining the effect 
of age and then to determine when, if at all, the sign of the effect of age changes. 
The option ndig(4) sets the display format for the coefficients to four digits after the 
decimal.
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Chapter 7 ■ Linear Regression Model Applications  249

. gfi ,  ndig(4)

GFI Information from Interaction Specification of
Effect of Age on g(Sexfrqmonth) from Linear Regression
----------------------------------------------------------------------
Effect of Age = 
   -0.2014 + 0.0013*Ses

 Sign Change Analysis of Effect of Age
 on g(Sexfrqmonth), Moderated by Ses (MV)

 --------------------------------------
              |            Age
 When         |  --------------------
 Ses=         |              
 -------------+------------------------
         17   | Neg b =    -0.1786
         27   | Neg b =    -0.1651
         37   | Neg b =    -0.1517
         47   | Neg b =    -0.1383
         57   | Neg b =    -0.1249
         67   | Neg b =    -0.1114
         77   | Neg b =    -0.0980
         87   | Neg b =    -0.0846
         97   | Neg b =    -0.0711 
 -------------+------------------------
 Sign Changes |        Never      
 -------------+------------------------
 % Positive   |          0.0
 --------------------------------------

The GFI expression tells us that the base effect of age is negative (−0.2014) and that 
it becomes smaller in magnitude as SES increases. Note that the italicized phrase would 
be incorrect if SES could have negative values. The sign change analysis table shows 
that within the range of sample values of SES, the effect of age is negative and never 
changes. The values of the moderated age effect change considerably. The largest 
magnitude effect (−0.1786) is more than 2.5 times the size of the smallest (−0.0711).

Significance Region Analyses:  
SIGREG and EFFDISP Tools
The SIGREG tool lets us explore whether the age effect changes in statistical sig-
nificance as SES varies and the pattern and size of the changes in the age effect.  
I initially specify only one option: ndig(3) sets the number of digits for reporting the 
age effect to three.
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250  Part II ■ Applications

Briefly, the boundary values report shows that the effect of age does not change 
significance within the sample range of SES values (17.1–19.2). There are changes in 
the age effect’s significance that occur well beyond the maximum possible SES value 
of 97.2, when SES = 116.7 and SES = 254.0. The significance region table shows this 
invariant significance as well as the actual changes in the values of the age effect quite 
clearly. The effect of age on the frequency of intimacy is always negative. At the mini-
mum SES (17), a 1-year increase in age would predict a 0.18 decline in the monthly 
frequency of intercourse. At the other end of the SES index, a 1-year increase in age 
would predict a 0.07 decrease in the frequency.

I think that the age effect’s magnitude is better conveyed by reporting the age effect 
for a 10-year difference. And, given that the age effect is always negative and sig-
nificant, limiting the display values for SES to every 20 units instead of every 10 
units—the range( ) suboption for SES on intspec—will produce a more succinct 
and readable table. Such results can be produced using the effect( ) option as a 
calculator to get the focal variable’s effect for any amount of change in the focal 
variable reported for each of the display values of the moderator. The syntax below 
accomplishes this recalculation by making the highlighted changes in the syntax for 
intspec and sigreg.

intspec focal(c.age) main( (c.age, name(Age) range(25(10)85)) ///
(c.ses, name(SES) range(17(20)97))) int2(c.age#c.ses) ndig(0) ///

sumwgt(n0)
sigreg, ndig(3) effect(b(10))

The results for the effect of age on frequency of intimacy for 10-year differences in 
age are as follows:
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Chapter 7 ■ Linear Regression Model Applications  251

A 10-year difference in age predicts a decline of close to 2 times a month in the fre-
quency of having sex for those with very low SES (17). For someone just above the 
mean of SES4 (57), the decline is much less at 1.2 times fewer per month. And at 
high SES (97), a 10-year difference in age reduces the frequency of intercourse by less 
than once a month (0.7). Keeping in mind that the mean frequency of intimacy is  
4 times per month, the reduction in the 10-year age effects with increasing SES 
appears substantial, as does the magnitude of the 10-year age effect at any level of 
SES. For example, the age effect at SES = 97 is a reduction equal to 18% of the mean, 
while the age effect when SES = 17 is 44% of the mean.

An alternative way to visualize how SES moderates the size, sign, and significance of 
the age effect is with a confidence bounds plot, the default plot type for an interval-by-
interval interaction created with the EFFDISP tool. I add the freq(tot) option to display 
the relative frequency distribution of SES below the plot and use the name( ) suboption 
within the plot( ) option to store the plot as a memory graph with the specified name. 
This produces a report of the plot options in the results window and the graph shown 
in Figure 7.1.

FIGURE 7.1  EFFDISP PLOT FOR ONE MODERATOR

 

. effdisp , effect(b(10)) plot(name(Age_by_SES_by_frq) freq(tot)) ndig(1) 

Plot Options Specified

   name =  Age_by_SES_b_frq
   freq =  tot
   type =  cbound by default

This plot is a visual counterpart to the significance region table for 10-year age effects. 
The solid black line shows that the effect of age decreases in magnitude from about 
−1.8 to about −0.8 as SES rises from 17 to 97. The spike plot at the bottom of the 
graph shows a somewhat even distribution of cases between SES = 27 and SES = 77 
with somewhat larger concentrations in the neighborhood of 37 and 67, places at 
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252  Part II ■ Applications

which the age effect is still fairly substantial. Because the confidence bounds (dotted 
lines) never contain the value 0, the age effect is always significant. Given that neither 
the sign of the age effect nor its statistical significance changes with SES, I find the 
effect display unnecessary. I would skip the effect display plot and instead present the 
significance region table or possibly an outcome display, as discussed next.

Outcome Displays: OUTDISP Tool
The OUTDISP tool produces tables or plots of the predicted outcome as it changes 
with the focal and moderating variables. Specifying the display values is especially 
consequential for creating tables because the predicted outcome is shown in the table 
only for the display values of the focal and moderating variables. For scatterplots and 
bar graphs, the moderators’ display values similarly define and limit the calculation 
points (except that all the categories of a nominal variable are used to define calcula-
tion points). The focal variable’s display values define axis labels, but the predicted 
outcome is calculated and shown across the full range of the focal variable’s values. In 
general, pick the number and spacing of display values to capture important changes 
in the pattern of the relationship of the outcome with the interacting predictors.

As we just saw, the moderated age effect does not change sign or significance across 
the sample values of SES. Thus, using four display values across close to the full 
range of SES sample values (20–95 in increments of 25) works well to portray the 
relationship. This requires respecifying the range( ) suboption for SES on the intspec 
command and then running the outdisp command:

intspec focal(c.age) main( (c.age, name(Age) range(25(10)85)) ///
(c.ses, name(SES) range(20(25)95))) int2(c.age#c.ses) ndig(0)

outdisp, outcome(atopt((means) _all)) plot(name(Age_by_SEI_Sex)) /// 
table(default)

The outdisp options specify the following:

• outcome(atopt((means) _all)) sets how the values of the predictors not 
part of the interaction are treated in calculating the predicted values of the 
monthly frequency of intercourse; that is, they are set to their means.5

• plot(name(SexFrq_by_Age_by_SES)) requests the creation of a plot that 
is stored during the duration of the Stata session with the specified name. 
Because the type( ) suboption is not listed, ICALC creates the default plot 
type, which is a scatterplot for an interval-by-interval interaction.

• table(default) specifies creation of a table of predicted values with the rows 
defined by the focal variable by default.

Reading down a column of the predicted values table indicates how the monthly 
frequency of having sex is predicted to change with age at the given level of SES. The 
pattern is easy to discern: The frequency of intercourse declines with age, and the 
amount of decline is less at higher levels of SES. A simple way to see this for a two-
variable interaction—and explain it to an audience—is to compare for each column 
the change in the predicted outcome for the youngest age (25) with that for the old-
est age (85). The reduction in the predicted number of times of having sex with age 
changes sharply with SES, as shown in Table 7.1:
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• 10.473 for SES = 20

• 8.459 for SES = 45

• 6.444 for SES = 70

• 4.430 for SES = 95

The scatterplot in Figure 7.2 also portrays the pattern quite well. The lines in the 
scatterplot trace the predicted frequency of intercourse by age for each level of 
SES and make it quite obvious that all the slopes are negative. Similarly, how SES 
moderates the age effect is clear. The solid line for SES = 20 has the steepest slope. 
The slope is somewhat shallower when SES = 45 (medium dashed line), even shal-
lower when SES = 70 (large dashed line), and shallower yet when SES = 95 (small 
dashed line).

Recap
The GFI and SIGREG results provided useful initial information about the mod-
eration of the age effect by SES—namely, that the age effect is always negative and 
statistically significant across the range of SES values. The significance region table 
clearly summarized the relationship between age and frequency of intercourse and 
how that was moderated by SES. The confidence bounds plot produced by the 
EFFDISP tool also showed these patterns in a straightforward way. The applica-
tion of the OUTDISP tool created both a table and a scatterplot of the predicted 
frequency of intimacy as it varies with age and how that relationship changes with 
SES. Both showed the pattern of the effect of age and its moderation by SES in 
a way that is easy to see and understand and, consequently, easy to present to an 
audience.

I suspect that many readers who are accustomed to seeing interaction effects inter-
preted using predicted values found the significance region table and confidence 
bounds plot less useful and harder to interpret, in part, because they are unfamiliar. 
If for nothing else, they are useful for identifying what the changes are in the pat-
tern of the focal variable’s effect and where they occur. This informs the choice of 

TABLE 7.1  PREDICTED VALUES TABLE FROM STATA OUTPUT
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display values for the moderator to show all the changes in the pattern. Hopefully, 
their utility will become more apparent when applied to more complex interactions 
or in situations where the moderated effect changes sign, as it does when we turn to 
interpreting the effect of SES moderated by age.

The Effect of SES Moderated by Age

One of the common errors in interpreting interaction effects that I discussed in 
Chapter 1 is to focus on only one of the predictors in the interaction and how it 
is moderated by the other. This provides an incomplete picture of the relationship 
between the outcome and the interacting predictors. As a case in point, we know how 
age affects the frequency of intercourse and how that is contingent on SES. But we 
know very little about how SES affects the outcome and how that is moderated by 
age. Thus, I reverse the roles of age and SES to interpret how SES as the focal variable 
is moderated by age.

Applying the ICALC Tools
The ICALC syntax that we use is nearly identical to what we just used for age as the 
focal variable. So I will walk through the example’s Stata output and only note the 
changes in the command lines without a detailed explanation. Initially, I declare SES 
as the focal variable on the intspec command by changing the focal(c.age) option to 
focal(c.ses) and then use the same specifications for the gfi and sigreg commands.

FIGURE 7.2  OUTDISP SCATTERPLOT FOR AGE MODERATED BY SES
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intspec focal(c.ses) main( (c.age, name(Age) range(25(10)85)) /// 
>         (c.ses, name(SES) range(17(10)97))) int2(c.age#c.ses) ndig(0) sumwgt(no)

Interaction Effects on Sexfrqmonth Specified as

     Main effect terms: ses  age 
     Two-way interaction terms: c.age#c.ses 

  These will be treated as: Focal variable = ses (“Ses”)
    moderated by interaction(s) with
        age (“Age”)

. gfi ,  ndig(4)

GFI Information from Interaction Specification of
Effect of Ses on g(Sexfrqmonth) from Linear Regression
----------------------------------------------------------------------

Effect of Ses = 
   -0.0781 + 0.0013*Age

 Sign Change Analysis of Effect of Ses
 on g(Sexfrqmonth), Moderated by Age (MV)

 --------------------------------------
              |            Ses
 When         |  --------------------
 Age=         |              
 -------------+------------------------
         25   | Neg b =    -0.0446
         35   | Neg b =    -0.0311
         45   | Neg b =    -0.0177
         55   | Neg b =    -0.0043
         65   | Pos b =     0.0092
         75   | Pos b =     0.0226
         85   | Pos b =     0.0360
 -------------+------------------------
 Sign Changes |  when MV= 58.17982
 -------------+------------------------
 % Positive   |         29.6
 --------------------------------------

The algebraic expression for SES’s effect tells us that its base effect on the frequency 
of having sex is negative (−0.0781) but becomes less negative (more positive) as age 
increases (0.0013). The sign change analysis indicates that the SES effect is initially 
negative but becomes smaller in magnitude as age increases and eventually turns 
positive. The row labeled “Sign Changes” reports that the sign change occurs when 
Age = 58.2; that is, for those 58 years and younger, there is a negative relationship 
between SES and frequency of intercourse; but for those older than 58, the relation-
ship is positive. The last row in the table indicates that about one third of respondents 
have a positive effect of SES and two thirds have a negative effect.

Because the effect of SES changes sign, we want to know for what values of age the 
effect is significant. It could be that a range of both positive and negative effects 
is significant, that only positive effects are significant, or that only negative effects 
are significant. Knowing this is obviously consequential for how we understand the 
nature of the relationship between SES and the frequency of intimacy. Running the 
sigreg command produces the information we need.
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The boundary values analysis provides exact information on the change in signifi-
cance of the effect of SES:

• When Age ≥ 48.875, the SES effect changes from significant to 
nonsignificant.

• When Age ≥ 69.251, the SES effect becomes significant again.

For this example, the significance region table works well to present how age moder-
ates the SES effect because you can readily see the changing sign, magnitude, and 
statistical significance of the moderated effect. You can supplement discussion of 
the table with the exact age values at which the sign and significance of the effect 
change. But rather than show the SES effect as one-unit differences, I would present 
1 standard deviation differences. And I would save the formatted table to Excel for 
presentation. You add two options to sigreg to do this:

sigreg , ndig(3) effect(b(sd)) save(Output\Table_7_2.xlsx table)

The effect( ) option specifies calculating effects as 1 standard deviation changes in 
SES. In the save( ) option, the keyword “table” saves the formatted table in the speci-
fied file and location.

Table 7.2 presents the formatted significance region table. This shows that the effect 
of SES on the frequency of having sex changes from negative and significant to 
positive and significant across the age range. For the youngest respondents (age 25), 
the frequency of intercourse is almost one time a month fewer for someone with 1 
standard deviation higher SES. At age 45, the SES effect is a decline in frequency of 
about one third of a time per month, and the SES effect becomes not significant at 
age 48.875. The effect turns positive around age 58 but does not become significant 
until age is slightly more than 69 years. At age 75, a 1 standard deviation higher SES 
predicts someone having sex almost one-half time more per month, increasing to 0.7 
times more for someone aged 85.

Applying the EFFDISP tool creates a confidence bounds plot by default that is also a 
very effective presentation choice in this context. Inside the plot( ) option, the name( ) 
suboption stores the plot as a named memory graph for the duration of your Stata 
session, and the freq( ) option adds a spike plot of the frequency distribution of age 
to the plot shown in Figure 7.3. The solid line shows how the moderated effect of SES 
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FIGURE 7.3  CONFIDENCE BOUNDS PLOT FROM EFFDISP

 

TABLE 7.2   EFFECT OF SES MODERATED BY AGE, FORMATTED TO HIGHLIGHT SIGN 
AND SIGNIFICANCE

Effect of SES (1 SD difference) on g(sexfrqmonth)

Effect of SES

Age (years)

25 35 45 55 65 75 85

−0.884* −0.618* −0.351* −0.085 0.182 0.448* 0.715*

Key

Plain font, no fill Pos, not Sig

Bold*, filled Pos, Sig

Italic, no fill Neg, not Sig

Bold italic*, filled Neg, Sig

Note: SES = socioeconomic status; SD = standard deviation.

changes with age, while the two dotted lines represent the upper and lower confidence 
bounds for the SES effect. At a given age, when the dotted lines bracket the horizontal 
zero reference line, this indicates a nonsignificant effect.

effdisp, plot(name(SexFrq_SES_by_Age) freq(tot)) ndig(2)

The areas of significance and nonsignificance on the plot are shown by the two verti-
cal reference lines. For ages below the first vertical line around age 49, SES has a nega-
tive and significant relationship with the frequency of having sex. For those between 
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the two vertical lines—ages 49 through 69—SES does not have a significant effect 
on the frequency of having sex. And for those above age 69, the effect of SES turns 
positive and significant. Note from the spike plot that a plurality of cases have nega-
tive and significant effects of SES. The next largest group—ages 49 to 68—have no 
significant effect of SES, and the smallest group—over age 72—experience a positive 
relationship between SES and frequency of intercourse.

The OUTDISP tool creates tables and/or plots of the predicted outcome as it varies 
with the focal and moderating variables, which are the most commonly used displays 
for interpreting interaction effects. For this example, we want to pick display values 
to highlight how the SES effect varies across the range of ages from a positive to a 
negative effect of similar magnitude, and where the SES effect experiences notable 
transitions. Setting the age display to range from 26 through 81 in steps of 11 years 
will achieve this. The lines in a scatterplot (rows in the predicted values table) show-
ing the relationship between SES and the frequency of sex contingent on age will be 
at or near where the SES effect

• has its minimum and maximum values (25, 85),

• changes from significant to nonsignificant (49),

• changes sign (58), and

• changes from nonsignificant back to significant (69).

To accomplish this, we change the range( ) suboption for age in the intspec command 
to range(26(11)81) and then run the outdisp command with a plot( ) option to store 
the scatterplot to a memory graph, a table( ) option to create a table of predicted 
values, and the outcome( ) option to set the reference values for the other predictors, 
as shown in this excerpt from the Stata output.

. intspec focal(c.ses) main( (c.age, name(Age) range(26(11)81)) ///
 …

. outdisp, outcome(atopt((means) _all)) plot(name(SexFrq_by_SES_by_Age)) >          
>       table(save(Output\Table_7_3.xlsx)
 …

The scatterplot in Figure 7.4 shows the progression of the SES effect on the frequency 
of intercourse from its most negative effect at age 26 (solid line) through its most 
positive effect at age 81 (large-dash-and-dot line). The third, fourth, and fifth lines 
from the top mark the transition from negative and barely significant (age 48), to 
barely positive and nonsignificant (age 58), to positive and barely significant (age 70). 
This scatterplot makes it easy to see the effect of SES and the frequency of having 
sex contingent on age. But while it is possible with some effort to tease out the effect 
of age contingent on SES from this plot, it is not easy to do so. I think this point is 
even truer for pulling out the effect of SES moderated by age from the scatterplot 
designed to highlight the effect of age moderated by SES in Figure 7.2. Presenting 
and interpreting both scatterplots would solve this problem.

A good alternative, at least for two-way interaction effects, is to report and interpret 
a table of predicted values from which you can equally well see and interpret both 
sides of the interaction effect. Look at Table 7.3, which presents the predicted values 
for frequency of having sex by age and SES. The rows are defined by SES and the 
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FIGURE 7.4  OUTDISP SCATTERPLOT OF SES MODERATED BY AGE

Note: SES = socioeconomic status.

TABLE 7.3  PREDICTED VALUES TABLE FROM OUTDISP, ONE MODERATOR

sexfrqmonth by the Interaction of SES With Age

SES

Age

26 37 48 59 70 81

17 8.5628 6.5985 4.6341 2.6697 0.7054 −1.2590

37 7.6985 6.0296 4.3607 2.6917 1.0228 −0.6461

57 6.8342 5.4607 4.0872 2.7138 1.3403 −0.0331

77 5.9698 4.8918 3.8138 2.7358 1.6578 0.5798

97 5.1055 4.3229 3.5404 2.7578 1.9753 1.1927

columns by age, and the cell entries report the predicted frequency of intercourse for 
the combination of SES and age values. This table that ICALC saved to an Excel file 
is formatted with font sizes proportional to the cell values. Reading down a column 
shows the SES effect for the given value of age. In each of the first three columns, 
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you can see that the predicted frequency of intercourse declines with SES as you 
read down the column—note that the font sizes are largest in the first row and then 
shrink as you read down the column.

You can also see that the rate of decline with SES diminishes as age increases across 
the columns. At age 26, the change in sexual activity from lowest to highest SES is 
a reduction of about 3.5 times per month (8.56 − 5.11 = 3.45), while at age 48, the 
reduction is only about once per month (4.63 − 3.54 = 1.09). Examining the next 
three columns, the SES effect has become positive, increasing across the columns. 
The increase in sexual activity with SES at age 59 is hardly different from 0 (2.76 − 
2.67 = 0.09), but at age 81, the increase is about two thirds as large (1.19 − [−1.26] = 
2.45) as the reduction in sexual activity with SES at age 25.

Examining the rows reveals the effect of age contingent on SES, which is even easier 
to discern because the frequency of having sex at every value of SES decreases from 
left to right—as do the font sizes—in each row as age increases. And the magnitude 
of the predicted drop in sexual activity declines from 9.82 at SES = 17 to about one 
third as large (3.91) at SES = 97. You can also see this by observing that the highest 
frequency of sexual activity in a row is for age 26 and that a row’s maximum value 
steadily declines across the range of SES values. At the same time, the smallest fre-
quency of sexual activity is always for age 81, and a row’s minimum steadily increases 
across the range of SES values. Hence, the difference between the falling maximum 
and the rising minimum (i.e., the effect of age) steadily declines with SES.

Recap
The essence of how age moderates the relationship between SES and frequency of hav-
ing sex is well documented by the GFI and SIGREG results: SES has a significant 
negative relationship with sexual activity for adults under age 49 but a positive relation-
ship for those older than 69. Each of the summary displays of this relationship—the  
significance region table, the confidence bounds plot, the predicted values scatter-
plot, and the table of predicted values—made this overall pattern clear.

Summary and Recommendations

I explored a variety of techniques for probing this interval-by-interval interaction 
effect. The pattern of the relationship between monthly frequency of sexual activity 
and the interaction of age and SES is not complex. So you have many good choices to 
help you understand and then to explain to an audience the nature of the relationship. 
I think that presenting and interpreting any of the following could be effective:

1. The two confidence bounds plots for the effect of age on sexual activity 
contingent on SES and for the effect of SES on sexual activity contingent 
on age. This is my least preferred option in this example. These plots take 
more work to explain to most audiences, in part because they are unfamiliar 
and, likely, many readers will be confused at first because they expect to see 
predicted values rather than moderated effects. Thus, it may not be worth 
the effort to use them when other options show the pattern well and are 
easier to explain.

2. The two formatted significance region tables for the effect of age on sexual 
activity moderated by SES and for the effect of SES on sexual activity 
moderated by age. I would suggest reporting effects for 1 standard deviation 
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Chapter 7 ■ Linear Regression Model Applications  261

changes in the focal variable in both tables. In addition to creating a 
consistent presentation and discussion of effects, this also permits a 
comparison of the magnitude of the SES effect versus the age effect. I would 
also recommend removing the fill pattern highlighting. I think it is more 
distracting than helpful in this straightforward example. We will see its 
utility in later examples with multiple moderators or a three-way interaction.

3. The pair of scatterplots, one with plotted lines showing the predicted 
frequency of sex varying with age for selected values of SES and the other 
with plotted lines for the predicted frequency of intercourse changing 
with SES at selected values of age. These are visually appealing and easy to 
comprehend and interpret for an audience.

4. The table of predicted sexual activity as it changes simultaneously with age 
and SES. While the table has somewhat less immediate visual impact than 
the other options, it has the distinct advantage that you only need to present 
and discuss a single display of the relationship. Other than explaining that 
the font sizes are proportional to the predicted values, it requires little in the 
way of explanation or instruction about how to read the table and what it 
shows.

In the end, the choice is a matter of two factors—first, who your audience is and how 
accessible you think they would find the different modes of reporting the interac-
tive relationship, and second, and equally important, what works best for you, what 
method you find the most intuitive and comprehensible. The better you can under-
stand and relate to the technique for reporting the interaction effect, the better you 
will be able to use it to tell a story that others will understand.

TWO-MODERATOR EXAMPLE
Data and Testing

This analysis regresses the respondent’s number of children on the interaction of fam-
ily income and birth cohort, the interaction of family income and education, and also 
predictors of the number of siblings, religious intensity, and race. Children, income 
(in $10K), education, and siblings are interval measures. Birth cohort is a four- 
category nominal variable (Depression Era, WWII, Baby Boom, and Post-Boom6) 
represented by three dummy variables using Post-Boom as the reference category. 
Race is a three-category nominal variable (White, Black, and Other) represented by 
two dummy variables using White as the reference.

The sample is restricted to respondents aged 40 and over, to make it more likely that 
childbearing has been completed. An additional 218 cases were excluded due to miss-
ing information on one or more of the variables.7 Diagnostic tests identified a small 
cluster of 15 outliers, but they were neither unusual (unrealistic) in their character-
istics nor influential in affecting the estimation results and conclusions.8 Statistical 
tests for heteroscedasticity indicated its possible presence, but diagnostic plots sug-
gested a small degree of variation and were more consistent with nonlinearity in 
the effects of income and education, such as an interaction. A sensitivity analysis 
comparing the results for OLS versus OLS with robust standard errors demonstrated 
inconsequential differences, both overall and in terms of testing for the presence of 
the interaction effects.
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This analysis demonstrates how to interpret interactions when there are two modera-
tors of the same focal variable, family income by cohort and by education. Reversing 
the roles of the focal and moderator variables, it illustrates how to interpret an inter-
action between a multicategory focal variable and an interval moderator (cohort by 
family income), as well as a second example of an interval-by-interval interaction 
(education by family income). Conceptually, the interaction between economic con-
ditions and birth cohort to predict fertility behavior has a long history of study, 
going back to the Easterlin (1961) hypothesis. The expectation is that the income 
effect should be larger (more negative) for more recent birth cohorts. An income-by-
education interaction on fertility behaviors has also long been studied (e.g., Halli, 
1990; Simon, 1975).

Including the income-by-education interaction in the model is supported by the t test 
of its coefficient (t = 2.47, p = .14) in the full model, which also includes the income-
by-cohort interaction. The statistical grounds for including the income-by-cohort 
interaction terms in the model is to some degree a judgment call, depending on how 
you test the set of three interaction parameters (see Chapter 1). A global test of the 
simultaneous removal of the three parameters from the full model is not significant 
(p = .166), but the global test cannot take into account that we would expect all the 
three interaction parameters to be negative and hence that their sum should be less 
than 0.

You can do a one-tailed test of this under a null hypothesis that the sum of the three 
parameters is greater than or equal to 0. This results in a significant t statistic reject-
ing the null hypothesis (t = −1.82, p = .035). Alternatively, we could test the three 
parameters individually with a one-tailed test, adjusting the significance level for 
multiple testing, and conclude that the interaction term should be included if any 
of the three are negative and significant. This procedure also supports including the 
income-by-cohort interaction in the model because the Depression-Era-by-income 
coefficient is negative and significant (t = −2.26, p = .012, Sidak-adjusted α = .017). 
Since the directional tests of the cohort-by-family-income interaction are significant, 
I include the family-income-by-cohort interaction in the model.

Strategy for Interpreting Two-Moderator Interaction Models
When you have multiple moderators of the same focal variable, you need to decide 
whether to interpret it one focal variable–moderator pair at a time or all of them 
simultaneously. In this instance, the first option is to interpret how the family 
income effect differs by cohort, with education set to reference values, and then how 
the income effect varies by education, with cohort limited to reference values. The 
second option is to interpret the effect of income as it changes across combinations 
of education’s display values and cohort’s display values. I prefer the second choice 
because it is a more holistic view. For LRMs and other linear link models, this choice 
is inconsequential because you will see exactly the same pattern for the income-by-
education interaction at any value of cohort and analogously for income-by-cohort 
interaction.

Keep in mind that you should reverse the roles of the focal and moderator vari-
ables, which defines two focal-by-single-moderator interactions to explore—that is,  
(1) birth cohort’s effect moderated by income and (2) education’s effect moderated by 
income. I recommend interpreting these first. And then I would interpret the double-
moderator component: how the family income effect is moderated by cohort and 
education. This will make an outcome display of the predicted number of children 
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varying with income, cohort, and education simultaneously—which we will con-
sider at the end of the section on interpreting family income moderated by cohort 
and education—easier to interpret because we will have an understanding of all the 
underlying patterns in hand.

The Effect of Birth Cohort Moderated by Family Income

INTSPEC Setup and GFI Analysis
These commands are shown in boldface at the top of the Stata output for the GFI 
analysis. I define birth cohort as the focal variable with the focal(i.cohort) option. The 
main( ) option includes birth cohort and its moderator family income (c.faminc10k). 
Because i.cohort is a nominal factor variable, ICALC will automatically include all its 
categories as display/calculation values, so the range( ) suboption would be ignored 
if it were listed. I set the display values for family income as $10K to $190K in 
$30K increments with the suboption range(1(3)19) because income is coded in units  
of $10K.

The gfi command has only the ndig(3) option to set the format for coefficients in the 
tables to three digits after the decimal. Given the scale of the coefficients for birth 
cohort and its interaction with family income, this provides three to four digits of 
information, which is what I prefer.

. intspec  focal(i.cohort)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(3)19)) /// 
>                 (i.cohort , name(Cohort))) ///
>         int2(c.faminc10k#i.cohort ) ndig(0) 
 …
. 
. gfi ,  ndig(3) 

GFI Information from Interaction Specification of
Effect of Cohort on g(Childs) from Linear Regression
----------------------------------------------------------------------

Effect of BabyBoom = 
   0.419 - 0.026*faminc10k

Effect of WWII = 
   0.817 - 0.028*faminc10k

Effect of DeprEra = 
   1.649 - 0.065*faminc10k
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Birth cohort has three effects in the regression analysis corresponding to the three 
included cohort indicators. Each effect represents the predicted difference in the 
number of children between an included cohort and the reference cohort (Post-
Boom). Thus, the GFI and sign change analyses report information about each effect 
as it varies with family income. The GFI results indicate that each of the included 
cohorts has a positive main effect coefficient but a negative interaction effect coeffi-
cient. This means that each of these cohorts has a larger predicted number of children 
than the Post-Boom cohort when Income = 0 but the difference diminishes as income 
increases. The rate of decline is similar for the Baby Boom and WWII cohorts and 
less than half the rate for the Depression Era cohort. The sign change analysis tells 
us that only the Baby Boom effect turns negative (fewer predicted children than the 
Post-Boom cohort) and that this occurs at a fairly high income level ($162,980).

Significance Region Analyses: SIGREG and EFFDISP Tools
Because the differences among cohorts in the predicted number of children declines 
with family income, this raises the question of whether the differences remain sig-
nificant, especially since they change at different rates. I start exploring this using 
the sigreg command with minimal options (shown in bold at the top of the output), 
specifying the significance level to use (.05) and the number of digits to report in 
tables. An important point to keep in mind is that the details of these results are con-
tingent on the choice of the reference category for birth cohort. For instance, if we 
used the Depression Era cohort for the reference, almost all of the moderated effects 
for the three included cohorts would be negative rather than positive. But the results 
and hence the stories we tell would be consistent in the meaning of the overall cohort 
effect on the number of children.

The boundary values analysis pinpoints the income level at which each of the cohort 
effects changes from significant to not significant. This occurs at $59,190 (5.919 × 
$10,000) for the Baby Boom cohort, about $116K for the WWII cohort, and about 
$152K for the Depression Era cohort. You can see this visually in the formatted sig-
nificance region table—note where the cell entries change from having a * symbol 
to not—which also shows the Baby Boom effect turning negative but remaining 
nonsignificant (italicized font).

The effect values show the differences in the predicted number of children between 
each cohort compared with the Post-Boom cohort; positive values indicate that the 
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Post-Boom cohort has a smaller predicted number than the comparison cohort. 
The Post-Boom cohort has the lowest predicted number of children, with the 
exception of the Baby Boom cohort at high income levels, but this disparity is 
not significant. The other two cohorts always have a predicted number of children 
greater than the Baby Boom and Post-Boom cohorts. And the Depression Era 
cohort has a higher predicted number of children than the WWII cohort except 
at very high incomes.

Another good presentation option is a confidence bounds plot for each of the included 
cohort effects. Because the default plot is needed, I only specify on the effdisp com-
mand the option ndig(1) to format the y-axis labels to one decimal place:

effdisp, ndig(1)

Figure 7.5 presents the three confidence bounds plots. The horizontal thin reference 
line separates the negative from the positive effects and reaffirms that only the Baby 
Boom cohort’s effect turns negative. The vertical reference lines mark the change from 
significant to not significant for each cohort, as well as documenting the different 
income levels at which this occurs for each cohort.

Outcome Displays: OUTDISP Tool
For a multicategory focal variable, the results in outcome displays are not contingent 
on the choice of the base reference category because the outcome’s predicted values 
are displayed for all the categories. Thus, they are typically a better option to convey 
the nature of the interaction effect in this situation than significance region tables or 
effect displays. I request the default plot from the outdisp command by specifying the 
options with plot(def) and use the moderator to define rows in the predicted values 
table with tab(row(mod)). The default plot for a categorical focal variable such as 
birth cohort is a bar chart for each of the display values of the moderator. I use the 
same intspec command as before, and the outdisp command produces the following 
output and bar charts.

FIGURE 7.5  EFFDISP FOR MULTIPLE-CATEGORY FOCAL VARIABLE
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. intspec  focal(i.cohort)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(3)19)) /// 
>                 (i.cohort , name(Cohort) range(1/4))  ) ///
>         int2(c.faminc10k#i.cohort ) ndig(0) 
 …
. 

 . outdisp, out(atopt((means) _all)) plot(def) table(row(mod)) ndig(2) 

Outcome Options Specified or Default

   metric =  obs
   atopt =  (asobs) _all

Table Options Specified or Default

   row =  mod

Plot Options Specified or Default

   type =  bar

Predicted Value of Childs by the Interaction of Cohort with Family_Inc.

------------------------------------------------------------––
                   |                   Cohort                  
        Family_Inc |  PostBoom   BabyBoom     WWII    DeprEra
-------------------+----------------------------------------––-
                 1 |      1.57       1.96       2.36       3.15
                 4 |      1.69       2.00       2.39       3.08
                 7 |      1.81       2.05       2.43       3.00
                10 |      1.93       2.09       2.46       2.93
                13 |      2.05       2.13       2.50       2.86
                16 |      2.17       2.17       2.53       2.78
                19 |      2.29       2.22       2.57       2.71
------------------------------------------------------------––-

Comparing the rows in the predicted values table reveals how the predicted differ-
ences among cohorts in number of children change across family income levels. The 
first five rows show the predicted number of children increasing from the youngest 
cohort (Post-Boom) to the oldest cohort (Depression Era). Doing some calculations 
in your head (or otherwise) shows diminishing differences among the cohorts at 
higher income levels. Moreover, the pattern of cohort differences alters in the last 
two rows while generally continuing to equalize. You can also contrast the patterns 
in the columns to see how the effect of family income is contingent on birth cohort. 
The Post-Boom cohort exhibits a steady increase in the predicted number of children 
with rising family income, the Depression Era cohort shows a smaller steady decline 
with income, and the other two cohorts show increases that are less in magnitude.

The bar charts in Figure 7.6 reveal these patterns without you having to do cal-
culations in your head. The height of the bars represents the predicted number of 
children in a birth cohort, and the bars are labeled with the predicted value. When 
family income is $130K or less (the first five bar charts), there is a stair-step pattern 
in which the number of children increases from the most recent cohort to the old-
est cohort. But the size of the steps diminishes as income rises. Beyond $130K, the 
cohort differences continue to level off, and the relative order of the number of chil-
dren across cohorts changes.
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FIGURE 7.6  OUTDISP FOR MULTIPLE-CATEGORY FOCAL VARIABLE

 

Next, compare the height of the bar for each cohort individually across income levels. 
The Post-Boom cohort exhibits a steady increase in the predicted number of chil-
dren with rising family income, the Depression Era cohort shows a steady decline 
with income, and the other two cohorts show increases that are much smaller in 
magnitude. This provides a first take on how family income is differentially related 
to the number of children. But the income effect is also moderated by education, so 
these values represent the income effect at education’s reference value (its mean). In 
the next section, I probe how education’s effect on the number of children is moder-
ated by family income, and in the process, we learn more about the children–income 
relationship.

The Effect of Education Moderated by Family Income

INTSPEC Setup and GFI Analysis
The intspec command has the same structure as for the cohort-by-income interaction 
just analyzed, with the substitution of education (c.ed) and its information as the 
focal variable, as shown in the Stata output. The gfi command now reports four digits 
for the coefficient values in the tables.

. intspec  focal(c.ed)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(3)19)) /// 
>                 (c.educ , name(Education) range(0(4)20)) ) ///
>         int2( c.faminc10k#c.educ ) ndig(0) 
 …
. gfi ,  ndig(4)

GFI Information from Interaction Specification of
Effect of Education on g(Childs) from Linear Regression
----------------------------------------------------------------------

Effect of Educ = 
   -0.1836 + 0.0065*Faminc10k
 Sign Change Analysis of Effect of Education
 on g(Childs), Moderated by Family_Inc (MV)
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--------------------------------------
              |      Education
 When         |  --------------------
 Family_Inc=  |              
 -------------+------------------------
          1   | Neg b =    -0.1771
          4   | Neg b =    -0.1576
          7   | Neg b =    -0.1381
         10   | Neg b =    -0.1186
         13   | Neg b =    -0.0990
         16   | Neg b =    -0.0795
         19   | Neg b =    -0.0600
 -------------+------------------------
 Sign Changes |        Never      
 -------------+------------------------
 % Positive   |          0.0
 --------------------------------------

The GFI expression tells us that the moderated education effect starts as negative 
when family income is 0 and is predicted to decline by nearly 2/10 of a child for a 
1-year difference in education. But the effect becomes less negative as family income 
rises—the coefficient value increases by 0.0065 with a $10K increase in family 
income. The sign change analysis shows that the education effect remains negative 
across the range of income values.

Significance Region Analyses: SIGREG Tool
To determine if the education effect remains significant, I use the sigreg command, 
with the number of digits for reporting set to four. The boundary values analysis 
indicates that the education effect on number of children is no longer significant 
once family income is greater than $170,529. The significance region table also shows 
this, as well as how the magnitude of the education effect is changing. By the income 
level at which it loses significance, the education effect is about one third of what it 
is at Income = 0. A confidence bounds plot could also be used to show this—effdisp 
with no options—but I prefer the significance region table when the results are sim-
ple and straightforward.

Outcome Displays: OUTDISP Tool
I use the outdisp command to produce the table below and the plot in Figure 7.7 to 
portray how the predicted number of children changes with education contingent 
on family income. As shown at the top of the Stata output, I specify three options:  
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(1) out( ) to set the reference values for the other predictors in the model to their 
means, (2) plot( ) to produce the default scatterplot for interval variables stored as a 
named memory graph, and (3) tab( ) to create a predicted values table with the mod-
erator (income) to define the rows.

. intspec  focal(c.ed)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(3)19)) /// 
>                 (c.educ , name(Education) range(0(4)20)) ) ///
>         int2( c.faminc10k#c.educ ) ndig(0) 
 … 
. 
. outdisp, out(atopt((means) _all)) plot(name(Plot1)) tab(row(mod)) 

Outcome Options Specified or Default

   metric =  obs
   atopt =   (means) _all

Table Options Specified or Default

   row =  mod

Plot Options Specified or Default

   type =  scat
   name =  plot1

Predicted Value of Childs by the Interaction of Education with Family_Inc.

----------------------------------------------------------------------------------
                |                            Education                            
     Family_Inc |         0          4          8         12         16         20
----------------+-----------------------------------------------------------------
              1 |    4.5489     3.8404     3.1320     2.4235     1.7150     1.0065
              4 |    4.3189     3.6885     3.0581     2.4277     1.7973     1.1669
              7 |    4.0888     3.5365     2.9842     2.4319     1.8796     1.3272
             10 |    3.8587     3.3845     2.9103     2.4361     1.9618     1.4876
             13 |    3.6287     3.2325     2.8364     2.4403     2.0441     1.6480
             16 |    3.3986     3.0806     2.7625     2.4445     2.1264     1.8084
             19 |    3.1686     2.9286     2.6886     2.4487     2.2087     1.9687
----------------------------------------------------------------------------------

Each row in the table shows that the predicted number of children decreases across 
education levels at a rate that diminishes with income level. For example, between 0 
and 20 years of education, the number of children is predicted to drop by 3.54 chil-
dren when income equals $10K, by 2.37 when income equals $100K, and by 1.20 
for an income of $190K. Comparing the columns reveals the relationship between 
number of children and family income as the relationship varies by education, but 
keep in mind this is at the reference values for birth cohort. Nonetheless, we see that 
the income effect changes from a negative one for low levels of education to a positive 
one at higher levels of education.

Presenting a predicted values plot is often a more convenient choice because it obvi-
ates the need for you to write out, as I did, examples of the magnitude of the numeric 
changes, to include such change calculations in the table, or to leave it to the reader 
to do head calculations. The upper panel of Figure 7.7 shows the default scatterplot 
created by the outdisp command. The lower panel is the same scatterplot with the 
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FIGURE 7.7   OUTDISP SCATTERPLOT FOR ONE MODERATOR, 
DEFAULT AND REVISED
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axis labeling cleaned up using the pltopts( ) option, as described in the concluding 
“Special Topics” section. Each line represents the children–education relationship 
for a given level of family income. The solid line shows that the predicted number of 
children drops most quickly across education levels when family income is near its 
minimum. The remaining dashed lines show that the children–education relation-
ship becomes less and less steep as income rises. And from the boundary values 
analysis, we know that the slopes of the lines for the highest two income levels are 
the shallowest and not significantly different from 0.

In the end, I think that there are three good options for reporting how the effect of 
education on number of children is moderated by family income (four if you count 
a confidence bounds plot). The significance region table gives a simple and compact 
presentation of the information. A predicted values table with an added column of 
changes in the predicted number of children across the range of education for each 
level of family income would also be very effective and accessible (see the later discus-
sion of Table 7.5). For a graphical presentation, I would recommend the scatterplot 
of predicted values both for the visual appeal of the plotted lines and for ease of 
comprehension and interpretation.

The Effect of Family Income Moderated  
by Birth Cohort and Education

Analyzing how income moderates the cohort effect and how it moderates the edu-
cation effect gave insight into how the income effect is moderated by cohort and 
education separately. I draw on this to discuss how to interpret the simultaneous 
moderation of family income.

INTSPEC Setup and GFI Analysis
The intspec command is shown in boldface at the top of the Stata output for the GFI 
analysis below. I first define family income—c.faminc—as the focal variable in the 
focal( ) option. The main( ) option now specifies the three variables constituting the 
interaction, family income and its moderators birth cohort and education. Because 
i.cohort is a nominal factor variable, ICALC automatically includes all of its catego-
ries as display/calculation values, so the range( ) suboption would be ignored if it 
were listed. When you have two moderators, you should use the one with the fewest 
display categories as the second moderator for the GIF and SIGREG tools because 
it will define the columns of 2D tables of results. Given the limited column width 
in the Stata Results window, you will get easier-to-read displays this way. Note the 
ordering of the two-way interaction variables in the int2( ) option—c.faminc#c.educ 
is first and then c.faminc#i.cohort. Remember that this order must correspond to the 
relative order in which the moderators are listed in the main( ) option. (The focal 
variable can be listed anywhere in this ordering.)

In contrast to the prior examples, this is a more complicated interaction specifica-
tion, with two moderators of family income, one of which is a multicategory nomi-
nal variable. So I use the gfi command to also produce a path–style diagram of the 
interaction effects in order to provide a visual display of the algebraic expressions. 
The suboptions for path( ) request the following:

• Show paths and coefficients for all interaction components in the graph 
(keyword “all”).
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• Format the coefficients in the diagram with four decimal places, like the 
other results.

• Title the diagram as “Interaction of …”.

. intspec  focal(c.faminc10k)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(3)19)) /// 
>                 (i.cohort , name(Cohort)) ///
>                 (c.educ , name(Education) range(0(5)20)) ) ///
>         int2(c.faminc10k#i.cohort c.faminc10k#c.educ ) ndig(0) 
 …
  
. gfi ,  ndig(4) path(all, ndig(4) boxw(1.5) /// 
>     title(“Interaction of Family Income by Cohort, Family Income by Education”))

GFI Information from Interaction Specification of
Effect of Family_Inc on g(Childs) from Linear Regression
----------------------------------------------------------------------

Effect of Faminc = 
   -0.0487 - 0.0257*BabyBoom - 0.0282*WWII - 0.0645*DeprEra+ 0.0065*Educ

Sign Change Analysis of Effect of Family_Inc on g(childs)              
 Moderated by Cohort (M1) and Education (M2) 
                                                  
                     
---------------------------------------------------------------------------------
                          Effect of faminc10k                          
---------------------------------------------------------------------------------
             |        When Education =                               |
 When        | ---------------------------------------------------   |Sign Changes
 Cohort=     |  0          5          10         15         20       |   given M1
 ----------–-+-------------------------------------------------------+-----------
             |                                                       |
  PostBoom   |   Neg b=     Neg b=     Pos b=     Pos b=     Pos b=  | when M2=
             |  -0.0487    -0.0161     0.0164     0.0490     0.0815  |    7.477
             |                                                       |
  BabyBoom   |   Neg b=     Neg b=     Neg b=     Pos b=     Pos b=  | when M2=
             |  -0.0744    -0.0418    -0.0093     0.0232     0.0558  |   11.429
             |                                                       |
  WWII       |   Neg b=     Neg b=     Neg b=     Pos b=     Pos b=   | when M2=
             |  -0.0769    -0.0443    -0.0118     0.0207     0.0533  |   11.814
             |                                                       |
  DeprEra    |   Neg b=     Neg b=     Neg b=     Neg b=     Pos b=   | when M2=
             |  -0.1132    -0.0807    -0.0481    -0.0156     0.0169  |   17.396
             |                                                       |
---–---------+-------------------------------------------------------+-----------
Sign Changes |     Never      Never  Sometimes  Sometimes      Never |
  given M2   |                                                       |
------–--------------------------------------------------------------------------

Percent of in-sample cases with positive moderated effect of faminc10k = 74.0

Let’s start with the GFI’s algebraic expression of the moderated effect of family 
income; remember that income is measured in units of $10K. Because 0 is a valid 
value for the moderating variables, the main effect coefficient for family income 

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 7 ■ Linear Regression Model Applications  273

(−0.0487) has a meaningful interpretation. For someone in the Post-Boom cohort 
(reference category) who had no formal schooling (Education = 0), the number of 
children is predicted to decline by 0.05 children with a $10K increase in family 
income. When you have nominal moderators, it is useful to write out the algebraic 
expression separately for each category. You do this by substituting 0s and 1s into the 
cohort indicator variables9 in the GFI expression to calculate the family income effect 
in each cohort. The Post-Boom cohort is 0 on all three indicators, and the remaining 
cohorts are coded 1 on their indicator and 0 on the other two. Applying this yields 
the following:

Post-Boom Educ− − × − × − × + ×
= −

0 0487 0 0257 0 0 0282 0 0 0645 0 0 0065
0
. . . . .

.. .
. . . .

0487 0 0065
0 0487 0 0257 1 0 0282 0 0 0645

+ ×
− − × − × −

Educ
Baby Boom ×× + ×

= − + ×
− − × −

0 0 0065
0 0744 0 0065

0 0487 0 0257 0 0

.
. .

. . .

Educ
Educ

WWII 00282 1 0 0645 0 0 0065
0 0769 0 0065

0

× − × + ×
= − + ×
−

. .
. .

.

Educ
Educ

DeprEra 00487 0 0257 0 0 0282 0 0 0645 1 0 0065
0 1132 0 006

− × − × − × + ×
= − +

. . . .
. .

Educ
55×Educ

This calculation makes explicit the meaning of the GFI expression. The baseline nega-
tive effect of family income has its smallest magnitude for the Post-Boom cohort 
but grows larger for the successively older three birth cohorts (negative cohort coeffi-
cients), while the family income effect becomes less negative (more positive) as educa-
tion increases (positive education coefficient). The path diagram in Figure 7.8 shows 
the structure of the interaction in terms of intersecting arrows leading from the left-
hand column boxes to the second-column boxes. Family income and birth cohort 
interact because their arrows intersect, as do family income and education, but cohort 
and education do not interact (their arrows do not intersect), nor is there a three-way 
interaction of income, cohort, and education. The “Special Topics” section shows how 
to use the path diagram to read off the expressions above for the effect of income in 
each birth cohort.

The GFI expression raises the question of whether the family income effect changes 
from negative to positive as education increases and, if so, how that turnover point 
varies by birth cohort. The sign change analysis, the next part of the output, answers 
these questions. We can immediately see that the family income effect does in fact 
become positive at different values of education in each of the birth cohorts. The last 
column (“Sign Changes Given M1”) indicates the sign change point for the birth 
cohorts. In the Post-Boom cohort, the family income effect becomes positive when 
Education > 7 years. For the Baby Boom and WWII cohorts, this change occurs 
when Education > 11 years, while for the Depression Era cohort, family income has 
a positive effect only for Education ≥ 18 years. The table note indicates that about 
three quarters of the estimation sample have a positive effect of family income on 
their number of children.

Significance Region Analyses: SIGREG and EFFDISP Tools
Especially because the family income effect changes sign, the next step is to explore 
its significance region to determine whether or not both positive and negative effects 
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are significant. I do this with the sigreg command (at the top of the output) with no 
options because I want the default significance level (.05) and number of decimal 
places (four) to report the family income effect. A boundary values analysis is only 
possible for an interval moderator contingent on the other moderator(s). Thus, the 
output generates a warning message about boundary values for birth cohort con-
tingent on education but reports the boundary values for education dependent on 
cohort. This analysis shows that for the Post-Boom and Baby Boom cohorts, the 
effect of family income is not significant unless education is greater than 13 and 14 
years, respectively. In contrast, it is only significant for the Depression Era cohort 
for those with less than 8 years of education and is never significant for the WWII 
cohort.

FIGURE 7.8  PATH–STYLE DIAGRAM OF INTERACTION EFFECTS MODEL

 

The boundary value results are primarily useful for providing detail when discussing the 
empirically derived significance region table and other results. This table shows the 
nature of the changing effect of family income more fully as it reports the sign, 
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magnitude, and significance of the family income effect for each cohort at selected 
values of education. The formatting of the table makes it easy to see the two regions 
of significance:

• Positive and significant family income effects for the Post-Boom and Baby 
Boom cohorts with some college or higher education (more than 13 and  
14 years, respectively)

• Negative and significant family income effects for the Depression Era cohort 
with less than 8 years of education

The significance region table and the content of these two bullet points provide a 
succinct and easy-to-understand portrayal of how family income predicts number 
of children differently for birth cohorts and for education levels. If I were to present 
this table, I would rerun sigreg with the save( ) option to save it as the Excel format-
ted version shown in Table 7.4. With two dimensions in the table and the change in 
sign, the addition of the fill pattern highlighting is much more effective than the font 
highlighting in the output table.

Significance Region for Effect of faminc10k (1 unit difference)
   on g(childs) at Selected Values of Cohort and Education 
------------------------------------------------------------
                                    At Cohort=   
 At Education= |    PostBoom   BabyBoom     WWII      DeprEra 
---------------+--------------------------------------------
          0    |   -0.0487    -0.0744    -0.0769    -0.1132*
          2    |   -0.0356    -0.0614    -0.0639    -0.1002*
          4    |   -0.0226    -0.0483    -0.0508    -0.0872*
          6    |   -0.0096    -0.0353    -0.0378    -0.0742*
          8    |    0.0034    -0.0223    -0.0248    -0.0611 
         10    |    0.0164    -0.0093    -0.0118    -0.0481 
         12    |    0.0294     0.0037     0.0012    -0.0351 
         14    |    0.0424*    0.0167     0.0142    -0.0221 
         16    |    0.0555*    0.0297*    0.0272    -0.0091 
         18    |    0.0685*    0.0428*    0.0403     0.0039 
         20    |    0.0815*    0.0558*    0.0533     0.0169 

     Key: Plain font  = Pos, Not Sig     Bold font*   = Pos, Sig 
          Italic font = Neg, Not Sig     Italic font* = Neg, Sig

Alternatively, we can use the EFFDISP tool to create a set of plots of the family 
income effect on the y-axis against one of the moderators on the x-axis, repeated 
for each display value of the second moderator. A confidence bounds plot requires 
an interval moderator to define the x-axis, while an error bar plot typically uses a 
categorical moderator to define the x-axis. With a mixture of interval and categorical 
moderators, you get the information from a confidence bounds plot most efficiently. 
In this instance, we can see how the family income effect varies across all the values 
of education within a birth cohort, as well as how the income effect varies across all 
the birth cohort categories. An error bar plot would display the family income effect 
against all the birth cohorts, with plots for selected values of education; separate plots 
for the 21 distinct values of education would be a visual overload.

The EFFDISP tool always uses the first moderator to define the x-axis, but the intspec 
command used previously lists education as the second moderator. So I respecify 
intspec to list education first. In the effdisp command, the plot( ) option generates 
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TABLE 7.4  EXCEL-FORMATTED SIGNIFICANCE REGION TABLE

Effect of faminc10k (One-Unit Difference) Moderated by Cohort and 
Education on g(childs), Formatted to Highlight Sign and Significance

Education

Cohort

Post-Boom Baby Boom WWII DeprEra

 0 −0.0487 −0.0744 −0.0769 −0.1132*

 2 −0.0356 −0.0614 −0.0639 −0.1002*

 4 −0.0226 −0.0483 −0.0508 −0.0872*

 6 −0.0096 −0.0353 −0.0378 −0.0742*

 8 0.0034 −0.0223 −0.0248 −0.0611

10 0.0164 −0.0093 −0.0118 −0.0481

12 0.0294 0.0037 0.0012 −0.0351

14 0.0424* 0.0167 0.0142 −0.0221

16 0.0555* 0.0297* 0.0272 −0.0091

18 0.0685* 0.0428* 0.0403 0.0039

20 0.0815* 0.0558* 0.0533 0.0169

Key

Plain font, no fill Pos, Not Sig

Bold*, filled Pos, Sig

Italic, no fill Neg, Not Sig

Bold italic*, filled Neg, Sig

confidence bounds plots with the specified name for saving them as memory graphs, 
and pltopts( ) formats the y-axis labels:

intspec focal(c.faminc10k) ///
main((c.faminc10k, name(Family_Inc) range(1(3)19)) ///

(c.educ, name(Education) range(0(5)20)) ///
(i.cohort, name(Cohort))) /// 

int2( c.faminc10k#c.educ c.faminc10k#i.cohort) ndig(0)

effdisp, plot(type(cbound) name(FamInc)) ndig(1) pltopts(ylab(-.3(.2).3))

Figure 7.9 reports for each birth cohort the confidence bounds plots of the effect of 
family income by education. In each plot, the solid line is the moderated effect of 
family income, and the dashed lines show the confidence boundaries for the effect. 
The thin gray horizontal reference line separates negative and positive effects. This 
shows that the family income effect changes from negative to positive for each birth 
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FIGURE 7.9  EFFDISP CONFIDENCE BOUNDS PLOT FOR TWO MODERATORS

 

cohort but at different values of education. A vertical reference line if present marks 
a change in the statistical significance of the family income effect.

For the Post-Boom and Baby Boom cohorts, it is apparent that the effect of family 
income is significant only at the upper end of the education distribution, where it has 
a positive effect. The effect of income is never significant for the WWII cohort, and 
for the Depression Era cohort, the income effect is negative and significant only when 
Education < 8 years. Like the significance region table, the confidence bounds plots 
provide an accessible and easy-to-interpret portrayal of the moderated effects of fam-
ily income. In practice, I would also get error bar plots for family income by cohort 
to see how well they show the patterns of the income effect. In this instance, I think 
you would find that they also tell the story but it takes more effort to see the patterns.
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Outcome Displays: OUTDISP Tool
A display of the predicted values can bring together all the components of the inter-
action specification. And the prior exploration of changes in the sign, magnitude, 
and statistical significance of the moderating effects provides a foundation for you to 
more easily see and interpret the patterns.

The ICALC commands are shown at the top of the output in boldface. I first respec-
ify family income’s display values on the intspec command (range(1(4.5)19)), with a 
larger increment between display values (every 4.5 units instead of every 3) to create 
a more compact predicted values table. The outdisp command has five options that 
create both a table and a scatterplot of the predicted number of children as it varies 
with family income, birth cohort, and education:

• out(atopt( (means) _all)) sets the other predictors’ reference values to their 
means.

• plot(name(Childs_by_FamInc_Cohort_Ed)) names the memory graph and 
produces the default plot, a scatterplot because the focal variable, family 
income, is interval.

• ndig(2) sets the format in the predicted values table to report two digits after 
the decimal.

• tab(def) creates the default table in which the focal variable defines the 
columns.

• pltopts( ) and its suboptions clean up the look of the initial default 
scatterplot. ylab and ymtick label the y-axis with values and ticks at 0, 2, 
4, 6, and with tick marks between these values, respectively. xlab labels the 
x-axis reporting values with $1K scaling. ytit and xtit provide new titles for 
the y-axis and x-axis, respectively. See the “Special Topics” section for more 
details.

(Note: For an initial run, you could request results using the defaults very simply with outdisp plot(def) tab(def).)

. intspec  focal(c.faminc10k<)  /// 
>         main((c.faminc10k , name(Family_Inc) range(1(4.5)19)) /// 
>                 (c.educ , name(Education) range(0(5)20))  ///
>                 (i.cohort , name(Cohort))) ///          
>         int2( c.faminc10k#c.educ c.faminc10k#i.cohort) ndig(1) 
 …
. 
. outdisp, out(atopt((means) _all)) plot(name(Childs_by_IncCohEd)) ndig(2) ///
> tab(def) pltopts(ylab(0(2)6) ymtick(1 3 5) ytit(“Number of Children”) /// 
>     xtit(“Family Income”) xlab(1 “$10K” 7 “$70K” 13 “$130K” 19 “$190K”))
…
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Predicted Value of childs by the Two-way Interactions of Family_Inc with
   Education and with Cohort.

--------------------------------------------------------------------------
Cohort and         |                      Family_Inc                      
Education          |       1.0        5.5       10.0       14.5       19.0
-------------------+------------------------------------------------------
PostBoom           |
                 0 |      3.98       3.76       3.54       3.32       3.10
                 5 |      3.09       3.02       2.95       2.88       2.80
                10 |      2.21       2.28       2.36       2.43       2.50
                15 |      1.32       1.54       1.76       1.98       2.20
                20 |      0.44       0.80       1.17       1.54       1.90
-------------------+------------------------------------------------------
BabyBoom           |
                 0 |      4.37       4.04       3.70       3.37       3.03
                 5 |      3.49       3.30       3.11       2.92       2.73
                10 |      2.60       2.56       2.52       2.48       2.43
                15 |      1.72       1.82       1.92       2.03       2.13
                20 |      0.83       1.08       1.33       1.58       1.83
-------------------+------------------------------------------------------
WWII               |
                 0 |      4.77       4.42       4.08       3.73       3.38
                 5 |      3.88       3.68       3.48       3.28       3.08
                10 |      3.00       2.94       2.89       2.84       2.78
                15 |      2.11       2.20       2.30       2.39       2.48
                20 |      1.23       1.47       1.70       1.94       2.18
-------------------+------------------------------------------------------
DeprEra            |
                 0 |      5.56       5.05       4.54       4.03       3.53
                 5 |      4.68       4.31       3.95       3.59       3.23
                10 |      3.79       3.58       3.36       3.14       2.93
                15 |      2.91       2.84       2.77       2.70       2.63
                20 |      2.02       2.10       2.17       2.25       2.33
--------------------------------------------------------------------------

While the predicted values table is set up to facilitate the interpretation of the moderated 
effect of family income by education and birth cohort, it also can be used for interpret-
ing how family income moderates education and how family income moderates cohort. 
To interpret the effect of education on number of children as moderated by income, we 
can use the panel of results for any cohort because they will show the identical pattern 
of magnitude differences in the effect of education. This would not be true if there were a 
three-way interaction of income, education, and cohort, or if these results were for a nonlinear 
link model. I use the Post-Boom cohort panel for convenience because it is the top one.

Reading down a column shows the effect of education on the predicted number of 
children for the given level of family income. Each column shows that the predicted 
number of children declines with education; for instance, at a family income of $55K 
(5.5), the predicted number of children drops from 3.76 for Education = 0 years to 
0.80 for Education = 20, a difference of 2.96 children. Comparing the columns from 
left to right, the rate of decline with education decelerates as family income increases: 
−3.54, −2.96, −2.37, −1.78, and −1.20. And the effect of education on number of 
children is no longer significant once family income is greater than $170,529, as 
determined by the boundary value analysis. I would advise readers to verify for them-
selves that we get the same rate of decline, within rounding error, for the education 
effect from the other three panels.
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Analogously, to interpret the effect of birth cohort, we can use any education row within 
a panel and compare it across the other panels. Let’s use the bottom row in each panel 
for 20 years of education and start by comparing the Post-Boom cohort with each of 
the other cohorts. The predicted number of children for the Baby Boom cohort is larger 
than for the Post-Boom cohort at incomes between $10K and $145K (by 0.39, 0.28, 
0.16, and 0.04) but is smaller—though not significant—than for the Post-Boom cohort 
at higher incomes (−0.07). For the other two (older) cohorts, the predicted number of 
children is always greater than for the Post-Boom cohort, but the differences diminish 
at higher levels of income and become nonsignificant (at $115,750 for the WWII cohort 
and at $152,130 for the Depression Era cohort). The overall pattern is a higher predicted 
number of children for older cohorts compared with younger cohorts, with the set of 
differences among the cohorts declining with family income and becoming nonsig-
nificant at incomes greater than $160K. The “Special Topics” section at the end of this 
chapter shows how to estimate the value of the moderator at which the differences in the 
predicted values among the categories of a nominal focal variable change significance.

Unlike the effect of birth cohort or education, the interpretation of family income’s 
effect changes depending on which panel (cohort) and which row within a panel 
(level of education) you examine. That is, family income’s effect is moderated by both 
cohort and education. Given the table organization, it is straightforward to discuss 
how family income’s effect varies by education for each cohort. To talk more easily 
about specifics, I added a column to the predicted values table saved in Excel. The 
rightmost column in Table 7.5 shows the change in the number of children across the 
displayed range of income.

Within each cohort, the effect of family income is negative for low levels of  
education—the predicted number of children declines from left to right—and turns 
positive at higher levels of education—the predicted number of children rises from 
left to right. And across the cohorts, the younger the cohort, the smaller the mag-
nitude of the negative effect of income and the larger the size of the positive effect. 
In the Post-Boom cohort, family income’s effect changes to a positive effect when 
Education > 7.48 but does not become significant until Education > 13.45. Its initial 
negative slope is the shallowest, with a change of −0.88 in the number of children, 
and its final positive slope is the steepest among the cohorts at almost 1.5 children. 
The changeover points are higher for the effect of family income in the Baby Boom 
than in the Post-Boom cohort, 11.43 for the sign change and 14.87 for the signifi-
cance change. And correspondingly, its most negative slope is steeper (−1.34) and 
its most positive slope shallower (1.00) than for the Post-Boom cohort. The WWII 
cohort has a very similar sign changeover point in slopes as the Baby Boom cohort 
(11.81), but the effect of family income does not become significant for any level of 
education. For the Depression Era cohort, the family income effect stays negative for 
all but the highest levels of education (>17.40). The negative effect is significant when 
Education < 7.4, but its positive effect is never significant. Not surprisingly, it has the 
largest magnitude negative slope (−2.04) and the smallest positive slope (0.31).

A good alternative is to use a predicted values plot, for which you do not necessarily 
need to do side calculations because the magnitudes of the slope for family income are 
visually apparent. But it can be useful to do so as a check that your visual assessment 
of steeper and shallower slopes is accurate. Figure 7.10 presents a scatterplot for each 
cohort, in which the predicted number of children is plotted against family income 
with separate lines for selected values of education. The solid line, which is the highest 
in each plot, represents the effect of family income for Education = 0, and the succes-
sive lower lines represent the income effect for progressively higher education levels.
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TABLE 7.5  OUTDISP PREDICTED VALUES TABLE WITH ADDED CALCULATION

childs by the Two-Way Interactions of Family_Inc With Education and With Cohort

Cohort Education Family Income
Change in  

Number of Children

Post-Boom  0 3.98 3.76 3.54 3.32 3.10 −0.88

 5 3.09 3.02 2.95 2.88 2.80 −0.29

10 2.21 2.28 2.36 2.43 2.50 0.30

15 1.32 1.54 1.76 1.98 2.20 0.88

20 0.44 0.80 1.17 1.54 1.90 1.47

Baby Boom  0 4.37 4.04 3.70 3.37 3.03 −1.34

 5 3.49 3.30 3.11 2.92 2.73 −0.75

10 2.60 2.56 2.52 2.48 2.43 −0.17

15 1.72 1.82 1.92 2.03 2.13 0.42

20 0.83 1.08 1.33 1.58 1.83 1.00

WWII  0 4.77 4.42 4.08 3.73 3.38 −1.38

 5 3.88 3.68 3.48 3.28 3.08 −0.80

10 3.00 2.94 2.89 2.84 2.78 −0.21

15 2.11 2.20 2.30 2.39 2.48 0.37

20 1.23 1.47 1.70 1.94 2.18 0.96

DeprEra  0 5.56 5.05 4.54 4.03 3.53 −2.04

 5 4.68 4.31 3.95 3.59 3.23 −1.45

10 3.79 3.58 3.36 3.14 2.93 −0.87

15 2.91 2.84 2.77 2.70 2.63 −0.28

20 2.02 2.10 2.17 2.25 2.33 0.31

Note: WWII = World War II; DeprEra = Depression Era.

These plots clearly show the pattern just described above. The family income effect 
changes from negative to positive as education increases—compare the lines at the 
top of each plot with those at the bottom—and the steepness of the slopes differs by 
birth cohort. The Post-Boom cohort has the steepest positive slopes and shallowest 
negative slopes, and the Depression Era cohort has the shallowest positive slopes and 
steepest negative slopes, with the other two cohorts similarly in between. Also notice 
that the angles between the lines in each plot are identical for each cohort, reflecting 
the fact that the model does not include a three-way interaction of income, educa-
tion, and cohort.
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FIGURE 7.10  OUTDISP SCATTERPLOT FOR TWO MODERATORS

 

The potential drawback of using scatterplots is that they do not lend themselves to 
describing the effects of education quite as easily or, especially, the effects of cohort. 
To interpret the education effect (which has the same pattern for each cohort), we 
can look at the vertical placement of each line as well as how the vertical distance 
between the plotted lines changes with family income. Because the plotted lines are 
vertically ordered, with the lines for smaller versus larger values of education having a 
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higher predicted number of children at any value of family income, we know that the 
effect of education is negative. Furthermore, the gap between the lines diminishes at 
higher levels of family income, which indicates that the negative effect of education 
decreases in magnitude as family income increases. From the boundary value analy-
sis, we know that the education effect becomes not significant for incomes greater 
than $152K. While this provides an accurate description of the education effect, it is 
harder to explain (and for readers to understand) than using a table or plot designed 
to highlight the effect of education.

To interpret the effect of birth cohort, use the line for any level of education, and 
compare it across the four plots. Looking at the left end of the top line for 0 years 
of education, we can see that the predicted number of children is highest in the 
Depression Era cohort and smallest in the Post-Boom cohort. But it is not possible to 
say with any confidence whether the Baby Boom cohort or the WWII cohort has the 
highest predicted number of children in the scatterplots. We can also deduce that the 
differences among the cohorts are diminishing. The lines with the steeper decreases 
in predicted values correspond to the cohorts with the higher initial predicted num-
ber of children. Moreover, it appears that the right-hand end of the solid lines for the 
cohorts is less spread out in vertical location than the left-hand ends of the lines. All 
in all, this is not a very compelling or informative way to describe the moderated 
effect of birth cohort.

What to Present and Interpret?
Let me start by reemphasizing that you would only present a very limited subset of 
the results from the analyses we applied to this example. Most are intended to help 
you, the analyst, better understand the interaction effects so that you can then bet-
ter explain it to your audience. I outline below what I think are the best options for 
this example, but these are not necessarily what might work best in other analyses or 
what might convey the information best for you. Keep in mind that you should dis-
cuss how each of the three component variables of the interaction—family income, 
education, and birth cohort—are related to the outcome. But what works well for 
interpreting one of these may not work as well for another. For example, the scatter-
plot in Figure 7.10 is very useful for interpreting the family income effect, while it is 
difficult to use for the effect of birth cohort. And, as you will see in the next chapter, 
what works well for a linear link model may not work equally well for a nonlinear 
link model.

I think that the table of predicted values with the added column of the predicted 
change in the number of children across the range of income (Table 7.5) is very acces-
sible since it reports predicted values in an intuitive metric: the number of children. 
And it provides an effective portrayal of how the predicted number of children varies 
with all three component variables of the interaction. It is effective because the pat-
terns are not complicated and this is a linear link model. It is easy to supplement it 
with information from the GFI and significance region analyses and can be concisely 
described. The relationship between number of children and education or between 
number of children and birth cohort can be described in a short paragraph each. The 
discussion of the family income effect is longer because it describes how the effect is 
contingent on two other factors.10 It also has the advantage that you can use a single 
display (table) for all three components of the interaction. For added visual impact, 
you could present the font-size-proportional-to-value-size version of the table, as in 
Table 7.3.
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A second, very good option would be to use three graphic displays of the predicted 
values, one for each of the variables in the interaction specification, because each 
graphic would highlight the effects of a different variable on the outcome. That is,  
I would use scatterplots for family income (Figure 7.10) and for education  
(Figure 7.7) but a bar chart for birth cohort (Figure 7.6). Although the figures require 
more space, they are a visually appealing, intuitive, and effective presentation of the 
relationships for linear link models. And they similarly lend themselves to succinct 
discussions.

A third good option would be a formatted significance region table for each of the 
component variables. These highlight changes in the sign and significance of the 
effects of the component variables and also show the varying magnitude of the effect. 
For education and family income, I would recommend calculating and reporting 
the effects for a standard deviation change in the predictor rather than a one-unit 
change. This would put both predictors on a common scale—standard deviation 
units—and let you compare the relative magnitude of their effects on the number of 
children. Depending on your audience, this may take more explanation and be less 
accessible than relying on the predicted values display, whether tabular or graphical.

Combinations of these three types can also be a quite reasonable option—for exam-
ple, presenting the predicted values table for the family income effect as well as a 
bar chart showing the relationship between number of children and birth cohort  
(Figure 7.6), or presenting formatted significance region tables for the effect of birth 
cohort and for the effect of education but presenting a predicted values scatterplot 
for the effect of family income. You may have noticed that I did not include effects 
displays (confidence bounds plots or error bar plots) among my recommendations. 
Although I find these visually appealing, I think that many readers are initially con-
fused by them as they expect to see plots of predicted values.

Looking ahead, this chapter concludes with material on several specialized topics or 
details that would have unduly interrupted the flow of discussion. The next chapter 
begins our tour through some of the most common GLMs with nonlinear link func-
tions and how to address the challenges of interpretation in those contexts. We begin 
with binomial logistic regression and probit analysis in Chapter 8.

SPECIAL TOPICS
Customizing Plots With the pltopts( ) Option

Consider the scatterplot in the upper panel of Figure 7.7. Although it is visually easy 
to interpret, the axis labeling is not ideal. You can create a much cleaner appearance 
either by using the graph editor in Stata to make changes or by rerunning the outdisp 
command and adding the pltopts( ) option to modify the appearance of the scatter-
plot. The lower panel was produced with the following command:

outdisp, out(atopt( (means) _all)) plot(name(Plot2)) pltopts( xlab(0(4)20) ///
ylab(1 3 5) ymtick(2 4, tl(**2) ysc(r(.5)) )

The content of pltopts( ) consists of Stata two-way graph options that do the following:

• xlab(0(4)20) replaces the education value labels on the x-axis with their 
numeric values.
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• ylab(1 3 5) replaces the noninteger labels for the number of children on the 
y-axis with whole number labels for 1, 3, and 5 children.

• ymtick(2 4, tl(*2)) adds minor tick marks on the y-axis between the new labels 
at values of 2 and 4, and tl(*2) makes the tick marks twice their usual length.

• ysc(r(.5)) extends the y-axis to a value of 0.5 without a tick mark or a label, 
to roughly equalize the top- and bottom-margin areas above and below the 
plotted lines, respectively.

Additional examples of how you can customize plots are shown in the outdisp com-
mand used to create Figure 7.10, which changes the titles for the y- and x-axes and 
adds custom value labels to the x-axis. It is beyond the scope of this book to review 
and explain all of the two-way options and how they might be used to modify plots 
created with ICALC, including when they won’t work. The options are described in 
the Stata documentation, but I would recommend Mitchell’s (2012) book on Stata 
graphics as an excellent reference on the graph commands and their options, as well 
as on using the graph editor to customize an already drawn plot. Alternatively, you 
could specify the save( ) suboption within plot( ) in the outdisp command. This will 
save the data used to create the plot in an Excel file, and then you can construct and 
customize your own graphics with whatever software platform you prefer.

Aside on Using the Path Diagram  
for a Multicategory Nominal Moderator

When you have nominal moderators, it is useful to write out the algebraic expression 
separately for each category. In the discussion of the GFI results for family income 
moderated by birth cohort and education, I showed how to do this algebraically. 
You can also read these directly from the path diagram of the interaction model, as 
I described in Chapter 6, repeating the process for each birth cohort. Start with the 
family income effect in the top box of the left-hand column, and trace each arrow to 
the boxes in the second column. That is, follow the horizontal arrow to the top box 
of the second column, and add the relevant coefficient for the birth cohort, dropping 
both variable labels. Then go back and follow the diagonal arrow to the other box 
in the second column, and add its contents, dropping the variable label for family 
income. For instance, for the WWII birth cohort the family income effect is equal to

−
−

0 0487
0 0
.
.

from the top left-hand box
282 from horizontal arrow to 2nnd column, top box, Line 2
65 from diagonal arrow to 2nd co+ ×0 00. Educ llumn, 2nd box

giving −0.0769 + 0.0065 × Educ. For the base birth cohort (Post-Boom), there is no 
relevant coefficient in the second column’s top box, so you add nothing to its expres-
sion and proceed to tracing the next arrow.

Testing Differences in the Predicted Outcome  
Among Categories of a Nominal Variable

I used an iterative computational approach to determine the value of family income 
at which the differences in the predicted number of children among the birth cohorts 
were not significantly different from 0. I relied on the mtable and mlincom commands 

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



286  Part II ■ Applications

in SPOST13 for doing the calculations. After describing the step-by-step process,  
I list a simple program that can be run to do the calculations; it is also available to 
download from www.icalcrlk.com.

The coded income values ranged from 0.5 to 19.2. So for the first iteration, I gener-
ated the predicted number of children for the birth cohorts for the 21 integer values 
of income from 0 to 20 with the mtable command:

mtable, at (faminc10k = (0(1)20) cohort=(1/4)) atmeans stat(pvalue noci) post

This produces 21 sets of estimates for each cohort, for a total of 84 stored estimates. 
For each set, I tested if the sum of the differences between the estimates for each 
unique pair of cohorts is equal to 0. With four cohorts, there are six unique pairs of 
cohorts to compare:

y y y y y ycohort cohort cohort cohort cohort co� � � � � �2 1 3 1 4−( ) + −( ) + − hhort

cohort cohort cohort cohort cohy y y y y

1

3 2 4 2

( )
+ −( ) + −( ) +� � � � � oort cohorty4 3 0−( ) =�

I performed the test with the mlincom command by referring to the position of the 
stored estimates. For example, the second set of estimates for the birth cohorts (when 
faminc = 1) is stored in positions 5 to 8, and the mlincom command is

mlincom 6-5 + 7-5 + 8-5 + 7-6 + 8-6 + 8-7

This produced a test statistic value of 5.149 with a p value of .000. I repeated this 
calculation for all 21 sets of estimates. This showed that the difference was signifi-
cant at a family income value of 15 (p = .022) but not significant at the value of 16 
(p = .051).

The second iteration increased the precision by one order of magnitude (to the near-
est 0.1). I followed the same process to test the differences among cohorts for fam-
ily income coded values from 15 to 16 in increments of 0.1. This showed that the 
intercohort differences were first not significant at a family income of 16.0, which 
represents a value of $160K (16.0 × $10,000). I could have done additional iterations 
with smaller increments to get additional digits for a more precise income value at 
which the differences turned nonsignificant.

In reality, I used the program shown in the box to automate each iteration, but it only 
applies to testing a nominal variable that is moderated by one other variable. After the 
program is loaded in your Stata session,11 you access it with the following command:

mcattest mcvar(nominal variable name) var2(moderator name) vallist 
(numlist)

The numlist must be of the form #1/#2 or #1(#2)#3.

The command for the first iteration is

mcattest, mcvar(cohort) var2(faminc10k) vallist(0(1)20)

and for the second iteration,

mcattest, mcvar(cohort) var2(faminc10k) vallist(15(.1)16)
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program mcattest

syntax, mcvar(varname) var2(varname) vallist(string)

tempname estnm

qui{

est store `estnm'

levelsof `mcvar', loc(nval)

loc ncat : list sizeof nval

mtable , at (`var2' “= (`vallist')” `mcvar'=(`nval')) atmeans stat(pvalue noci) post

mlincom, clear

loc atind = 1-`ncat'

forvalues fi = `vallist' {

loc atind= `atind' + `ncat'

loc difftxt “”

forvalues i=1/`=`ncat'-1' {

forvalues j=1/`=`ncat'- ì'' {

if `j' == 1 & `i'== 1 loc difftxt “`difftxt' `=`atind'+̀ j'' - `atind' “

if `j' > 1 | `i' > 1 loc difftxt “`difftxt' + `=`atind'+̀ j'+̀ i'-1' - `=`atind'+̀ i'-1' “

}

}

mlincom `difftxt', add rowname(”`fi'”)

}

}

mlincom

qui est restore `estnm'

end

CHAPTER 7 NOTES
 1. These models are commonly labeled as GLS because they generalize (relax) the assumptions 

of equal error variance and zero covariance. I avoid using this label in the text exposition 
in order to avoid the inevitable confusion about what is meant by labeling a model GLS 
versus GLM or by making statements such as “a GLS model is one type of GLM.”

 2. Response categories with a range of values used the midpoint value. The top-coded 
category for frequency of sex (4+ times per week) was recoded using a value of 4.5 times 
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per week. Redoing the analyses using a value of 5 times per week produced essentially 
identical results.

 3. In all, 269 cases were missing on frequency of sex, 109 more were missing on attendance 
at religious services, and 53 more were missing on education.

 4. The mean of SES in the sample analyzed is 53.2, which is a bit larger than the mean in the 
full sample of 52.2.

 5. This is specified for didactic reasons. For OLS regression, the margins command produces 
exactly the same results for the “as observed” method of treating the predictors and for the 
“as means” option. Thus, in practice, this option is unnecessary for OLS analyses.

 6. The birth cohorts are defined by respondents’ age in 2010: Depression Era (70 years or 
older), World War II (65–69), Baby Boom (46–64), and Post-Boom (40–45). Translated 
to year born, the categories are Depression Era (before 1941), World War II (1941–1945), 
Baby Boom (1946–1964), and Post-Boom (1965–1970).

 7. In all, 172 cases were missing on income, an additional 45 were missing on religious 
intensity, and 1 more was missing on education.

 8. These cases all had high leverage values but moderate residuals. They all had the maximum 
(top coded) value for income, were in the two oldest birth cohorts, and had an atypically 
small number of children. Removing these cases from the analysis had negligible effects 
on the estimation results. Hence, the analyses include them.

 9. If your nominal variable is contrast coded rather than dummy coded, you would instead 
substitute the contrast-code values to specify a given cohort.

10. Taking out my commentary from what I wrote above, the description for education was 
176 words in five sentences, and for cohort, 117 words in four sentences.

11. mcattest.do can be downloaded from icalcrlk.com from the icalc_spec package. You could 
either highlight the set of lines for the program and click on the run icon or issue a run 
command specifying the path and the filename—run path/mcattest.do. It is also listed at 
the end of the downloadable do-file for this example.
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