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Getting Started With R

and RStudio

T his chapter shows you how to conduct statistical data analysis using R as the
primary data analysis tool and RStudio as the primary tool for organizing
your data analysis workflow and for producing reports. The goal is to con-

duct reproducible research, in which the finished product not only summarizes your
findings but also contains all of the instructions and data needed to replicate your
work. Consequently, you, or another skilled person, can easily understand what
you have done and, if necessary, reproduce it. If you are a student using R for as-
signments, you will simultaneously analyze data using R, make your R commands
available to your instructor, and write up your findings using R Markdown in
RStudio. If you are a researcher or a data analyst, you can follow the same general
process, preparing documents that contain reproducible results ready for distribu-
tion to others.

• We begin the chapter in Section 1.1 with a discussion of RStudio projects,
which are a simple, yet powerful, means of organizing your work that takes
advantage of the design of RStudio.

• We then introduce a variety of basic features of R in Section 1.2, showing
you how to use the Console in RStudio to interact directly with the R inter-
preter; how to call R functions to perform computations; how to work with
vectors, which are one-dimensional arrays of numbers, character strings, or
logical values; how to define variables; and how to define functions.

• In Section 1.3, we explain how to locate and fix errors and how to get help
with R.

• Direct interaction with R is ocassionally useful, but in Section 1.4 we show
you how to work more effectively by using the RStudio editor to create
scripts of R commands, making it easier to correct mistakes and to save a
permanent record of your work. We then outline a more sophisticated and
powerful approach to reproducible research, combining R commands with
largely free-form explanatory material in an RMarkdown document, which
you can easily convert into a neatly typeset report.
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2 ■ 1. Getting Started With R and RStudio

• Although the focus of theRCompanion is on usingR for regression modeling,
Section 1.6 enumerates some generally useful R functions for basic statistical
methods.

• Finally, Section 1.7 explains how so-called generic functions in R are able to
adapt their behavior to different kinds of data, so that, for example, the sum-
mary() function produces very different reports for a data set and for a linear
regression model.

By the end of the chapter, you should be able to start working efficiently in R and
RStudio.

We know that many readers are in the habit of beginning a book at Chapter 1,
skipping the Preface. The Preface to this book, however, includes information about
installing R and RStudio on your computer, along with the car, effects, and car-
Data packages, which are associated with the R Companion to Applied Regression
and are necessary for many of the examples in the text. We suggest that you rework
the examples as you go along, because data analysis is best learned by doing, not
simply by reading. Moreover, the Preface includes information on the typograph-
ical and other conventions that we use in the text. So, if you haven’t yet read the
Preface, please back up and do so now!

1.1 Projects in RStudio

Projects are a means of organizing your work so that both you and RStudio can
keep track of all the files relevant to a particular activity. For example, a student
may want to useR in several different projects, such as a statistics course, a sociology
course, and a thesis research project. The data and data analysis files for each of these
activities typically differ from the files associated with the other activities. Similarly,
researchers and data analysts generally engage in several distinct research projects,
both simultaneously and over time. Using RStudio projects to organize your work
will keep the files for distinct activities separate from each other.

If you return to a project after some time has elapsed, you can therefore be sure
that all the files in the project directory are relevant to the work you want to repro-
duce or continue, and if you have the discipline to put all files that concern a project
in the project directory, everything you need should be easy to find. By organizing
your work in separate project directories, you are on your way to conducting fully
reproducible research.

Your first task is to create a new project directory. You can keep a project directory
on your hard disk or on a flash drive. Some cloud services, likeDropbox, can also be
used for saving a project directory.1 To create a project, select File > New Project
from the RStudiomenus. In the resulting sequence of dialog boxes, successively se-
lectExisting Directory orNewDirectory, depending onwhether or not the project
directory already exists; navigate by pressing the Browse... button to the location

1 At present, Google Drive appears to be incompatible with RStudio projects.
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1.1. Projects in RStudio ■ 3

where you wish to create the project; and, for a new directory, supply the name of
the directory to be created. We assume here that you enter the nameR-Companion
for the project directory, which will contain files relevant to this book. You can use
the R-Companion project as you work through this and other chapters of the R
Companion.

Creating the R-Companion project changes the RStudio window, which was
depicted in its original state in Figures 2 and 3 in the Preface (pages xix and xx),
in two ways: First, the name of the project you created is shown in the upper-right
corner of the window. Clicking on the project name displays a drop-down menu
that allows you to navigate to other projects you have created or to create a new
project. The second change is in the Files tab, located in the lower-right pane,
which lists the files in your project directory. If you just created the R-Companion
project in a new directory, you will only see one file, R-Companion.Rproj, which
RStudio uses to administer the project.

Although we don’t need them quite yet, we will add a few files to the
R-Companion project, typical of the kinds of files you might find in a project
directory. Assuming that you are connected to the internet and have previously
installed the car package, type the following two commands at the > command
prompt in the Console pane,2 remembering to press the Enter or return key af-
ter each command:

library("car")

Loading required package: carData

carWeb(setup=TRUE)

The first of these commands loads the car package.3 When car is loaded, the car-
Data package is automatically loaded as well, as reflected in the message printed by
the library() command. In subsequent chapters, we suppress package-startup
messages to conserve space. The second command calls a function called carWeb()
in the car package to initialize your project directory by downloading several files
from the website for this book to the R-Companion project directory. As shown
in Figure 1.1, information about the downloaded files is displayed in the Console,
and the files are now listed in the Files tab. We will use these files in this chapter
and in a few succeeding chapters.

Files in an RStudio project typically include plain-text data files, usually of file
type .txt or .csv, files of R commands, of file type .R or .r, and R Markdown
files, of file type .Rmd, among others. In a complex project, you may wish to create
subdirectories of the main project directory, for example, a Data subdirectory for
data files or a Reports subdirectory for R Markdown files.

RStudio starts in a “default” working directory whenever you choose not to
use a project. You can reset the default directory, which is initially set to your

2 As we explained in the Preface, we don’t show the command prompt when we display R input in the
text.
3 If you haven’t installed the car package, or if the library("car") command produces an error, then
please (re)read the Preface to get going.
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4 ■ 1. Getting Started With R and RStudio
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1.2. R Basics ■ 5

Documents directory in Windows or your home directory in macOS, by se-
lecting Tools > Global Options from the RStudio menus, and then clicking the
Browse… button on the General tab, navigating to the desired location in your
file system. We find that we almost never work in the default directory, however,
because creating a new RStudio project for each problem is very easy and because
putting unrelated files in the same directory is a recipe for confusion.

1.2 R Basics

1.2.1 Interacting With R Through the Console

Data analysis in R typically proceeds as an interactive dialogue with the interpreter,
which may be accessed directly in the RStudio Console pane. We can type an
R command at the > prompt in the Console (which is not shown in the R input
displayed below) and press the Enter or return key. The interpreter responds by
executing the command and, as appropriate, returning a result, producing graphical
output, or sending output to a file or device.

The R language includes the usual arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
^ or ** exponentiation

Here are some simple examples of arithmetic in R:

2 + 3 # addition

[1] 5

2 - 3 # subtraction

[1] -1

2*3 # multiplication

[1] 6

2/3 # division

[1] 0.66667

2^3 # exponentiation

[1] 8

Output lines are preceded by [1]. When the printed output consists of many val-
ues (a “vector”: see Section 1.2.4) spread over several lines, each line begins with
the index number of the first element in that line; an example will appear shortly.
After the interpreter executes a command and returns a value, it waits for the next
command, as indicated by the > prompt. The pound sign or hash mark (#) signifies
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6 ■ 1. Getting Started With R and RStudio

a comment, and text to the right of # is ignored by the interpreter. We often take
advantage of this feature to insert explanatory text to the right of commands, as in
the examples above.

Several arithmetic operations may be combined to build up complex expressions:

4^2 - 3*2

[1] 10

In the usual mathematical notation, this command is 42 − 3× 2. R uses standard
conventions for precedence of mathematical operators. So, for example, exponen-
tiation takes place before multiplication, which takes place before subtraction. If
two operations have equal precedence, such as addition and subtraction, then they
are evaluated from left to right:

1 - 6 + 4

[1] -1

You can always explicitly specify the order of evaluation of an expression by using
parentheses; thus, the expression 4^2 - 3*2 is equivalent to

(4^2) - (3*2)

[1] 10

and

(4 + 3)^2

[1] 49

is different from

4 + 3^2

[1] 13

Although spaces are not required to separate the elements of an arithmetic ex-
pression, judicious use of spaces can help clarify the meaning of the expression.
Compare the following commands, for example:

-2--3

[1] 1

-2 - -3

[1] 1

Placing spaces around operators usually makes expressions more readable, as in the
preceding examples, and some style standards for R code suggest that they always
be used. We feel, however, that readability of commands is generally improved
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1.2. R Basics ■ 7

by putting spaces around the binary arithmetic operators + and - but not usually
around *, /, or ^.

Interacting directly with the R interpreter by typing at the command prompt
is, for a variety of reasons, a poor way to organize your work. In Section 1.4, we’ll
show you how to work more effectively using scripts of R commands and, even
better, dynamic R Markdown documents.

1.2.2 Editing R Commands in the Console

• The arrow keys on your keyboard are useful for navigating among commands
previously entered into the Console: Use the ↑ and ↓ keys to move up and
down in the the command history.

• You can also access the command history in theRStudioHistory tab: Double-
clicking on a command in the History tab transfers the command to the >
prompt in the Console.

• The command shown after the > prompt can either be re-executed or edited.
Use the→ and← keys to move the cursor within the command after the >.
Use the backspace or delete key to erase a character. Typed characters will be
inserted at the cursor.

• You can also move the cursor with the mouse, left-clicking at the desired
point.

1.2.3 R Functions

In addition to the common arithmetic operators, the packages in the standardR dis-
tribution include hundreds of functions (programs) for mathematical operations,
for manipulating data, for statistical data analysis, for making graphs, for working
with files, and for other purposes. Function arguments are values passed to func-
tions, and these are specified within parentheses after the function name. For ex-
ample, to calculate the natural log of 100, that is, loge(100) or ln(100), we use the
log() function:4

4 Here’s a quick review of logarithms (“logs”), which play an important role in statistical data analysis (see,
e.g., Section 3.4.1):

• The log of a positive number x to the base b (where b is also a positive number), written logb x, is
the exponent to which b must be raised to produce x. That is, if y = logb x, then by = x.

• Thus, for example, log10 100 = 2 because 102 = 100; log10 0.01 = −2 because 10−2 = 1/102 =
0.01; log2 8 = 3 because 23 = 8; and log2 1/8 = −3 because 2−3 = 1/8.

• So-called natural logs use the base e ≈ 2.71828.
• Thus, for example, loge e = 1 because e1 = e.
• Logs to the bases 2 and 10 are often used in data analysis, because powers of 2 and 10 are familiar.

Logs to the base 10 are called “common logs.”
• Regardless of the base b, logb 1 = 0, because b0 = 1.
• Regardless of the base, the log of zero is undefined (or taken as log 0 = −∞), and the logs of

negative numbers are undefined.
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8 ■ 1. Getting Started With R and RStudio

log(100)

[1] 4.6052

To compute the log of 100 to the base 10, we specify

log(100, base=10)

[1] 2

We could equivalently use the specialized log10() function:

log10(100) # equivalent

[1] 2

Arguments to R functions may be specified in the order in which they occur
in the function definition, or by the name of the argument followed by = (the
equals sign) and a value. In the command log(100, base=10), the value 100 is
implicitly matched to the first argument of the log function. The second argument
in the function call, base=10, explicitly matches the value 10 to the argument
base. Arguments specified by name need not appear in a function call in the same
order that they appear in the function definition.

Different arguments are separated by commas, and, for clarity, we prefer to leave
a space after each comma, although these spaces are not required. Some stylistic
standards for R code recommend placing spaces around = in assigning values to
arguments, but we usually find it clearer not to insert extra spaces here. Function-
argument names may be abbreviated, as long as the abbreviation is unique; thus,
the previous example may be rendered more compactly as

log(100, b=10)

[1] 2

because the log() function has only one argument beginning with the letter “b.”
We generally prefer not to abbreviate function arguments because abbreviation pro-
motes unclarity.

This example begs a question, however: How do we know what the arguments to
the log() function are? To obtain information about a function, use the help()
function or, synonymously, the ? help operator. For example,

help("log")
?log

Either of these equivalent commands opens the R help page for the log() function
and some closely associated functions, such as the exponential function, exp(x)
= ex, in the RStudio Help tab. Figure 1.2 shows the resulting help page in ab-
breviated form, where three widely separated dots (...) mean that we have elided
some information, a convention that we’ll occasionally use to abbreviate R output
as well.
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1.2. R Basics ■ 9

log {base} R Documentation

Logarithms and Exponentials
Description
log() computes logarithms, by default natural logarithms, log10() com-
putes common (i.e., base 10) logarithms, and log2() computes binary (i.e.,
base 2) logarithms. The general form log(x, base) computes logarithms
with base base.
. . .
exp() computes the exponential function.
. . .

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)
. . .
exp(x)
. . .

Arguments
x: a numeric or complex vector.
base: a positive or complex number: the base with respect to which loga-
rithms are computed. Defaults to e = exp(1).

Details
. . .
Value
A vector of the same length as x containing the transformed values. log(0)
gives -Inf, and negative values give NaN.
. . .

See Also
Trig, sqrt(), Arithmetic.

Examples
log(exp(3))
log10(1e7)# = 7
. . .

Figure 1.2 Abbreviated documentation displayed by the command
help("log"). The ellipses (. . .) represent elided lines, and the
underscored text under “See Also” indicates hyperlinks to other help
pages—click on a link to go to the corresponding help page. The
symbol -Inf in the “Value” section represents minus infinity (−∞),
and NaN means “not a number.”
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10 ■ 1. Getting Started With R and RStudio

The log() help page is more or less typical of help pages for R functions in
both standard R packages and in contributed packages obtained from CRAN. The
Description section of the help page provides a brief, general description of the
documented functions; the Usage section shows each documented function, its
arguments, and argument default values (for arguments that have defaults, see be-
low); the Arguments section explains each argument; the Details section (sup-
pressed in Figure 1.2) elaborates the description of the documented functions; the
Value section describes the value returned by each documented function; the See
Also section includes hyperlinked references to other help pages; and the Exam-
ples section illustrates the use of the documented functions. There may be other
sections as well; for example, help pages for functions documented in contributed
CRAN packages typically have an Author section.

A novel feature of the R help system is the facility it provides to execute most
examples in the help pages via the example() command:

example("log")

log> log(exp(3))
[1] 3

log> log10(1e7) # = 7
[1] 7
. . .

The number 1e7 in the second example is given in scientific notation and represents
1× 107 = 10 million. Scientific notation may also be used in R output to represent
very large or very small numbers.

A quick way to determine the arguments of an R function is to use the args()
function:5

args("log")

function (x, base = exp(1))
NULL

Because base is the second argument of the log() function, to compute log10 100,
we can also type

log(100, 10)

[1] 2

specifying both arguments to the function (i.e., x and base) by position.
An argument to a function may have a default value that is used if the argument

is not explicitly specified in a function call. Defaults are shown in the function
documentation and in the output of args(). For example, the base argument to
the log() function defaults to exp(1) or e1 ≈ 2.71828, the base of the natural
logarithms.

5 Disregard the NULL value returned by args().
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1.2. R Basics ■ 11

1.2.4 Vectors and Variables

R would not be very convenient to use if we always had to compute one value at a
time. The arithmetic operators, and mostR functions, can operate on more complex
data structures than individual numbers. The simplest of these data structures is a
numeric vector, or one-dimensional array of numbers.6 An individual number in
R is really a vector with a single element.

A simple way to construct a vector is with the c() function, which combines
its elements:
c(1, 2, 3, 4)

[1] 1 2 3 4

Many other functions also return vectors as results. For example, the sequence op-
erator : generates consecutive whole numbers, while the sequence function seq()
does much the same thing but more flexibly:
1:4 # integer sequence

[1] 1 2 3 4

4:1 # descending

[1] 4 3 2 1

-1:2 # negative to positive

[1] -1 0 1 2

seq(1, 4) # equivalent to 1:4

[1] 1 2 3 4

seq(2, 8, by=2) # specify interval between elements

[1] 2 4 6 8

seq(0, 1, by=0.1) # noninteger sequence

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

seq(0, 1, length=11) # specify number of elements

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The standard arithmetic operators and functions extend to vectors in a natural
manner on an elementwise basis:

c(1, 2, 3, 4)/2

[1] 0.5 1.0 1.5 2.0

c(1, 2, 3, 4)/c(4, 3, 2, 1)

[1] 0.25000 0.66667 1.50000 4.00000

log(c(0.1, 1, 10, 100), base=10)

[1] -1 0 1 2

6 We refer here to vectors informally as one-dimensional “arrays” using that term loosely, because arrays
in R are a distinct data structure (described in Section 2.4).
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12 ■ 1. Getting Started With R and RStudio

If the operands are of different lengths, then the shorter of the two is extended by
repetition, as in c(1, 2, 3, 4)/2 above, where the 2 in the denominator is ef-
fectively repeated four times. If the length of the longer operand is not a multiple of
the length of the shorter one, then a warning message is printed, but the interpreter
proceeds with the operation, recycling the elements of the shorter operand:

c(1, 2, 3, 4) + c(4, 3) # no warning

[1] 5 5 7 7

c(1, 2, 3, 4) + c(4, 3, 2) # produces warning

[1] 5 5 5 8

Warning message:
In c(1, 2, 3, 4) + c(4, 3, 2) :

longer object length is not a multiple of shorter object length

R would be of little practical use if we were unable to save the results returned
by functions to use them in further computation. A value is saved by assigning it to
a variable, as in the following example, which assigns the vector c(1, 2, 3, 4)
to the variable x:

x <- c(1, 2, 3, 4) # assignment
x # print

[1] 1 2 3 4

The left-pointing arrow (<-) is the assignment operator; it is composed of the two
characters < (less than) and - (dash or minus), with no intervening blanks, and is
usually read as gets: “The variable x gets the value c(1, 2, 3, 4).” The equals
sign (=) may also be used for assignment in place of the arrow (<-), except in-
side a function call, where = is used exclusively to specify arguments by name. We
generally recommend the use of the arrow for assignment.7

As the preceding example illustrates, when the leftmost operation in a command
is an assignment, nothing is printed. Typing the name of a variable as in the second
command above is equivalent to typing the command print(x) and causes the
value of x to be printed.

Variable and function names in R are composed of letters (a–z, A–Z), numerals
(0–9), periods (.), and underscores (_), and they may be arbitrarily long. In par-
ticular, the symbols # and - should not appear in variable or function names. The
first character in a name must be a letter or a period, but variable names beginning
with a period are reserved by convention for special purposes.8 Names in R are case
sensitive: So, for example, x and X are distinct variables. Using descriptive names,
for example, totalIncome rather than x2, is almost always a good idea.

7 R also permits a right-pointing arrow for assignment, as in 2 + 3 -> x, but its use is uncommon.
8 Nonstandard names may also be used in a variety of contexts, including assignments, by enclosing the
names in back-ticks, or in single or double quotes (e.g., "given name" <- "John" ). Nonstandard
names can lead to unanticipated problems, however, and in almost all circumstances are best avoided.
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1.2. R Basics ■ 13

R commands using variables simply substitute the values of the variables for their
names:

x/2 # equivalent to c(1, 2, 3, 4)/2

[1] 0.5 1.0 1.5 2.0

(y <- sqrt(x))

[1] 1.0000 1.4142 1.7321 2.0000

In the last example, sqrt() is the square-root function, and thus sqrt(x) is
equivalent to x^0.5. To obtain printed output without having to type the name
of the variable y as a separate command, we enclose the command in parentheses
so that the assignment is no longer the leftmost operation. We will use this trick
regularly to make our R code more compact.

Variables in R are dynamically defined, meaning that we need not tell the inter-
preter in advance how many values x will hold or whether it contains integers, real
numbers, character strings, or something else. Moreover, if we wish, we may freely
overwrite (i.e., redefine) an existing variable, here, x:

(x <- rnorm(100)) # 100 standard-normal random numbers

[1] 0.58552882 0.70946602 -0.10930331 -0.45349717 0.60588746
[6] -1.81795597 0.63009855 -0.27618411 -0.28415974 -0.91932200

[11] -0.11624781 1.81731204 0.37062786 0.52021646 -0.75053199
. . .
[91] -0.96390148 -0.85508251 1.88694694 -0.39181937 -0.98063295
[96] 0.68733210 -0.50504352 2.15771982 -0.59979756 -0.69454669

The rnorm() function generates standard-normal random numbers,9 in this case,
100 of them. Two additional arguments of rnorm(), mean and sd, which are
not used in this example, allow us to sample values from a normal distribution
with arbitrary mean and standard deviation; the defaults are mean=0 and sd=1,
and because we did not specify these arguments, the defaults were used (for details,
see help("rnorm")). When a vector prints on more than one line, as in the last
example, the index number of the leading element of each line is shown in square
brackets; thus, the first value in the second line of output is the sixth element of the
vector x.

Figure 1.3 shows the contents of the RStudio Environment tab after x has been
overwritten. The Environment tab displays a brief summary of objects defined in
the global environment, currently the numeric vector x with 100 values, the first five
of which are shown, and the numeric vector y. The global environment, also called
the user workspace, is the region of your computer’s memory that holds objects
created at the R command prompt. Overwriting x with a new value did not change
the value of y.

9 Because the values are sampled randomly, when you enter this command you’ll get a different result
from ours. Random-number generation in R, including how to make the results of random simulations
reproducible, is discussed in Section 10.7.
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14 ■ 1. Getting Started With R and RStudio

Figure 1.3 The Environment tab shows the name, and an abbreviated version
of the value, for all objects that you define in the global environment.

The summary() function is an example of a generic function: How it behaves
depends on its argument. Applied to the numeric vector x of 100 numbers sampled
from the standard-normal distribution, we get

summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.380 -0.590 0.484 0.245 0.900 2.477

In this case, summary(x) prints the minimum and maximum values of its argu-
ment, along with the mean, median, and first and third quartiles (but, curiously,
not the standard deviation). Applied to another kind of object, to a data set or a
regression model, for example, summary() produces different information.10

1.2.5 Nonnumeric Vectors

Vectors may also contain nonnumeric values. For example, the command

(words <- c("To", "be", "or", "not", "to", "be"))

[1] "To" "be" "or" "not" "to" "be"

defines a character vector whose elements are character strings. Many R functions
work with character data. For example, we may call paste() to turn the vector
words into a single character string:

paste(words, collapse=" ")

[1] "To be or not to be"

The very useful paste() function pastes character strings together; the collapse
argument, as its name implies, collapses the character vector into a single string,
separating the elements by the character or characters between the quotation marks,
in this case one blank space.11

10 The args() and help() functions may not be very helpful with generic functions. See Section 1.7 for
an explanation of how generic functions in R work.
11 The paste() function is discussed along with other functions for manipulating character data in Sec-
tion 2.6.
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1.2. R Basics ■ 15

A logical vector consists of elements that are either TRUE or FALSE:

(logical.values <- c(TRUE, TRUE, FALSE, TRUE))

[1] TRUE TRUE FALSE TRUE

The symbols T and F may also be used as logical values, but while TRUE and FALSE
are reserved symbols in R,12 T and F are not, an omission that we regard as a design
flaw in the language.13 For example, you can perniciously assign T <- FALSE and
F <- TRUE (Socrates was executed for less!). For this reason, we suggest that you
avoid the symbols T and F in your R code and that you also avoid using T and F as
variable names.

There are R functions and operators for working with logical vectors. For exam-
ple, the ! (“not”) operator negates a logical vector:

!logical.values

[1] FALSE FALSE TRUE FALSE

If we use logical values in arithmetic, R treats FALSE as if it were zero and TRUE as
if it were 1:

sum(logical.values)

[1] 3

sum(!logical.values)

[1] 1

If we create a vector mixing character strings, logical values, and numbers, we
produce a vector of character strings:

c("A", FALSE, 3.0)

[1] "A" "FALSE" "3"

A vector of mixed numbers and logical values is treated as numeric, with FALSE
becoming zero and TRUE becoming 1:

c(10, FALSE, -6.5, TRUE)

[1] 10.0 0.0 -6.5 1.0

These examples illustrate coercion: In the first case, we say that the logical and nu-
meric values are coerced to character values; in the second case, the logical values are
coerced to numbers. In general, coercion in R takes place naturally, and is designed
to lose as little information as possible.

12 For the full set of reserved symbols in R, see help("Reserved").
13 It would, however, be difficult to make T and F reserved symbols now, because doing so would break
some existing R code.
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16 ■ 1. Getting Started With R and RStudio

1.2.6 Indexing Vectors

If we wish to access, perhaps to print, only one of the elements of a vector, we can
specify the index of the element within square brackets. For example, x[12] is the
12th element of the vector x:

x[12] # 12th element

[1] 1.8173

words[2] # second element

[1] "be"

logical.values[3] # third element

[1] FALSE

We may also specify a vector of indices:

x[6:15] # elements 6 through 15

[1] -1.81796 0.63010 -0.27618 -0.28416 -0.91932 -0.11625
[7] 1.81731 0.37063 0.52022 -0.75053

x[c(1, 3, 5)] # 1st, 3rd, 5th elements

[1] 0.58553 -0.10930 0.60589

Negative indices cause the corresponding values of the vector to be omitted :

x[-(11:100)] # omit elements 11 through 100

[1] 0.58553 0.70947 -0.10930 -0.45350 0.60589 -1.81796
[7] 0.63010 -0.27618 -0.28416 -0.91932

The parentheses around 11:100 serve to avoid generating numbers from −11 to
100, which would result in an error. (Try it!) In this case, x[-(11:100)] is just
a convoluted way of obtaining x[1:10], but negative indexing can be very useful
in statistical data analysis, for example, to delete outliers from a computation.

Indexing a vector by a logical vector of the same length selects the elements with
TRUE indices; for example,

v <- 1:4
v[c(TRUE, FALSE, FALSE, TRUE)]

[1] 1 4

Logical values frequently arise through the use of relational operators, all of which
are vectorized , which means that they apply on an elementwise basis to vectors:

== equals
!= not equals
<= less than or equals
< less than
> greater than
>= greater than or equals
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1.2. R Basics ■ 17

The double-equals sign (==) is used for testing equality, because = is reserved for
specifying function arguments and for assignment. Using = where == is intended is
a common mistake and can result either in a syntax error or, worse, in an inadvertent
assignment, so be careful!

Logical values may also be used in conjunction with the logical operators:

& and (vectorized)
&& and (for single left and right operands)
| or (vectorized)
|| or (for single left and right operands)
! not (vectorized)

Here are some simple examples:

1 == 2

[1] FALSE

1 != 2

[1] TRUE

1 <= 2

[1] TRUE

1 < 1:3

[1] FALSE TRUE TRUE

3:1 > 1:3

[1] TRUE FALSE FALSE

3:1 >= 1:3

[1] TRUE TRUE FALSE

TRUE & c(TRUE, FALSE)

[1] TRUE FALSE

c(TRUE, FALSE, FALSE) | c(TRUE, TRUE, FALSE)

[1] TRUE TRUE FALSE

TRUE && FALSE

[1] FALSE

TRUE || FALSE

[1] TRUE

The unvectorized versions of the and (&&) and or (||) operators, included in the
table, are primarily useful for writing R programs (see Chapter 10) and are not
appropriate for indexing vectors.

An extended example illustrates the use of the comparison and logical operators
in indexing:

(z <- x[1:10]) # first 10 elements of x

[1] 0.58553 0.70947 -0.10930 -0.45350 0.60589 -1.81796
[7] 0.63010 -0.27618 -0.28416 -0.91932

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



18 ■ 1. Getting Started With R and RStudio

z < -0.5 # is each element less than -0.5?

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

z > 0.5 # is each element greater than 0.5

[1] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

z < -0.5 | z > 0.5 # < and > are of higher precedence than |

[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

abs(z) > 0.5 # absolute value, equivalent to last expression

[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

z[abs(z) > 0.5] # values of z for which |z| > 0.5

[1] 0.58553 0.70947 0.60589 -1.81796 0.63010 -0.91932

z[!(abs(z) > 0.5)] # values z for which |z| <= 0.5

[1] -0.10930 -0.45350 -0.27618 -0.28416

The abs() function returns the absolute value of its argument. The last of these
commands uses the ! operator to negate the logical values produced by abs(z) >
0.5 and thus selects the numbers for which the condition is FALSE.

A couple of pointers about using the logical and relational operators:

• We need to be careful in typing z < -0.5; although most spaces in R com-
mands are optional, the space after < is crucial: z <-0.5 would assign the
value 0.5 to z. Even when the spaces are not required around operators, they
usually help to clarify R commands.

• Logical operators have lower precedence than relational operators, and so z
< -0.5 | z > 0.5 is equivalent to (z < -0.5) | (z > 0.5). When
in doubt, parenthesize!

1.2.7 User-Defined Functions

As you probably guessed, R includes functions for calculating many common sta-
tistical summaries, such as the mean of a numeric vector:

mean(x)

[1] 0.2452

Recall that, as shown in theRStudioEnvironment tab, x is a vector of 100 standard-
normal random numbers, and so this result is the mean of those 100 values.

Were there no mean() function, we could nevertheless have calculated the mean
straightforwardly using the built-in functions sum() and length():

sum(x)/length(x)

[1] 0.2452
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1.2. R Basics ■ 19

where the length() function returns the number of elements in its argument. To
do this repeatedly every time we need to compute the mean of a numeric vector
would be inconvenient, and so in the absence of the standard R mean() function,
we could define our own mean function:14

myMean <- function(x){
sum(x)/length(x)

}

• We define a function using the function function().15 The arguments to
function(), here just x, are the formal arguments (also called dummy argu-
ments) of the function to be defined, myMean(). An actual argument will ap-
pear in place of the formal argument when the function myMean() is called
in an R command.

• The remainder of the function definition is anR expression, enclosed in curly
braces, specifying the body of the function. Typically, the function body is a
compound expression consisting of several R commands, each on a separate
line (or, less commonly, separated by semicolons). The value returned by the
function is then the value of the last command in the function body.16 In our
simple myMean() function, however, the function body consists of a single
command.17

• The rules for naming functions are the same as for naming variables. We
avoided using the name mean because we did not wish to replace the standard
mean() function, which is a generic function with greater utility than our
simple version. For example, mean() has the additional argument na.rm,
which tells the function what to do if some of the elements of x are missing.18

If we had chosen to name our function mean(), then our mean() function,
which resides in the global environment, would shadow or mask the standard
mean() function (see Section 2.3), and calling mean() at the R command
prompt would invoke our mean() function rather than the standard one. We
could in this circumstance restore use of the standard mean() function sim-
ply by deleting our function from the global environment, via the command
remove("mean"). You cannot, however, delete a standard R function or a
function in a package you have loaded.

14 When anR command like the definition of the myMean() function extends across more than one line, as
it is entered into the Console, the > prompt changes to +, indicating the continuation of the command. As
explained in the Preface, we don’t shown the command and continuation prompts in R input displayed in
the text. The R interpreter recognizes that a command is to be continued in this manner if it’s syntactically
incomplete, for example, if there’s an opening brace, {, unmatched by a closing brace, }.
15 We could not resist writing that sentence! Actually, however, function() is a special form, not a true
function, because its arguments (here, the formal argument x) are not evaluated. The distinction is technical,
and it will do no harm to think of function() as a function that returns a function as its result.
16 It is also possible to terminate function execution and explicitly return a value using return(). See
Chapter 10 for more information about writing R functions.
17 When the function body comprises a single R command, it’s not necessary to enclose the body
in braces; thus, we could have defined the function more compactly as myMean <- function(x)
sum(x)/length(x).
18 Section 2.3.2 explains how missing data are represented and handled in R.
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20 ■ 1. Getting Started With R and RStudio

• In naming functions, we prefer using camel case, as in myMean(), to sepa-
rate words in a function name, rather than separating words by periods: for
example, my.mean(). Periods in function names play a special role in object-
oriented programming in R (see Section 1.7), and using periods in the names
of ordinary functions consequently invites confusion.19 Some R users prefer
to use snake case, which employs underscores to separate words in function
and variable names: for example, my_mean().

• Functions, such as myMean(), that you create in the global environment are
listed in the Functions section of the RStudio Environment tab.

• We will introduce additional information about writing R functions as re-
quired and take up the topic more systematically in Chapter 10.

User-defined functions inR are employed in exactly the same way as the standard
R functions. Indeed, most of the standard functions in R are themselves written in
the R language.20 Proceeding with the myMean() function,

myMean(x)

[1] 0.2452

y # from sqrt(c(1, 2, 3, 4))

[1] 1.0000 1.4142 1.7321 2.0000

myMean(y)

[1] 1.5366

myMean(1:100)

[1] 50.5

myMean(sqrt(1:100))

[1] 6.7146

As these examples illustrate, there is no necessary correspondence between the name
of the formal argument x of the function myMean() and an actual argument to the
function. Function arguments are evaluated by the interpreter, and it is the value of
the actual argument that is passed to the function, not its name. In the last example,
the function call sqrt(1:100) must first be evaluated, and then the result is used
as the argument to myMean().

Function arguments, along with any variables that are defined within a function,
are local to the function and exist only while the function executes. These local
variables are distinct from global variables of the same names residing in the global
environment, which, as we have seen, are listed in theRStudio Environment tab.21

19 Nevertheless, largely for historical reasons, many R functions have periods in their names, including
standard functions such as install.packages().
20 Some of the standard R functions are primitives, in the sense that they are defined in code written in the
lower-level languages C and Fortran.
21 In more advanced use of RStudio, you can pause a function while it is executing to examine variables
in its local environment; see Section 10.8.
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1.3. Fixing Errors and Getting Help ■ 21

For example, the last call to myMean() passed the value of sqrt(1:100) (i.e., the
square roots of the integers from 1 to 100) to the formal argument x, but this
argument is local to the function myMean() and thus did not alter the contents of
the global variable x, as you can confirm by examining the Environment tab.

Our function myMean() is used in the same way as standardR functions, and we
can consequently use it in defining other functions. For example, the R function
sd() can compute the standard deviation of a numeric vector. Here’s a simple
substitute, mySD(), which uses myMean():
mySD <- function(x){

sqrt(sum((x - myMean(x))^2)/(length(x) - 1))
}
mySD(1:100)

[1] 29.011

sd(1:100) # check

[1] 29.011

1.3 Fixing Errors and Getting Help

1.3.1 When Things Go Wrong

Errors can result from bugs in computer software, but much more commonly, they
are the fault of the user. No one is perfect, and it is impossible to use a computer
without making mistakes. Part of the craft of computing is debugging, that is, find-
ing and fixing errors.

• Although it never hurts to be careful, do not worry too much about generat-
ing errors. An advantage of working in an interactive system is that you can
proceed step by step, fixing mistakes as you go. R is also unusually forgiving
in that it is designed to restore the workspace to its previous state when a
command results in an error.

• If you are unsure whether a command is properly formulated or will do what
you intend, try it out. You can often debug a command by trying it on a
scaled-down problem with an obvious answer. If the answer that you get
differs from the one that you expected, focus your attention on the nature
of the difference. Similarly, reworking examples from this book, from R help
pages, or from textbooks or journal articles can help convince you that a
program is working properly.22

• When you do generate an error, don’t panic! Read the error or warning mes-
sage carefully. Although some R error messages are cryptic, others are infor-
mative, and it is often possible to figure out the source of the error from the
message. Some of the most common errors are merely typing mistakes. For

22 Sometimes, however, testing may convince you that the published results are wrong, but that is another
story.
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22 ■ 1. Getting Started With R and RStudio

example, when the interpreter tells you that an object is not found, suspect
a typing error that inadvertently produced the name of a nonexistent object,
or that you forgot to load a package or to define a variable or a function used
in the offending command.

• The source of an error may be subtle, particularly because anR command can
generate a sequence (or stack) of function calls of one function by another,
and the error message may originate deep within this sequence. The trace-
back() function, called with no arguments, provides information about the
sequence of function calls leading up to an error.
To create a simple example, we’ll use the mySD() function for computing the
standard deviation, defined in Section 1.2.7; to remind ourselves of the defi-
nition of this function, and of myMean(), which mySD() calls, we can print
the functions by typing their names (without the parentheses that would sig-
nal a function call), as for any R objects:23

mySD

function(x){
sqrt(sum((x - myMean(x))^2)/(length(x) - 1))

}

myMean

function(x){
sum(x)/length(x)

}
<bytecode: 0x000000001cbbdb28>

We deliberately produce an error by foolishly calling mySD() with a nonnu-
meric argument:

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"
[16] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

mySD(letters)

Error in sum(x): invalid 'type' (character) of argument

The built-in variable letters contains the lowercase letters, and of course,
calculating the standard deviation of character data makes no sense. Although
the source of the problem is obvious, the error occurs in the sum() function,
not directly in mySD().24 The traceback() function, called after the of-
fending command, shows the sequence of function calls culminating in the
error:

23 The “bytecode” message below the listing of myMean() indicates that R has translated the function
into a form that executes more quickly.
24 Were it programmed more carefully, mySD() would perform sanity checks on its argument and report
a more informative error message when, as here, the argument is nonsensical.
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1.3. Fixing Errors and Getting Help ■ 23

traceback()

2: myMean(x) at #2
1: mySD(letters)

Here, “at #2” refers to the second line of the definition of mySD(), where
myMean() is called.

• Not all mistakes generate error messages. Indeed, the ones that do not are
more pernicious, because you may fail to notice them. Always check your
output for reasonableness, and investigate suspicious results. It’s also generally
a bad idea to ignore warnings, even though, unlike errors, they don’t prevent
the completion of a computation.

• If you need to interrupt the execution of a command, you may do so by
pressing the Esc (escape) key or by using the mouse to press the Stop button
at the upper right of the RStudio Console pane.25

1.3.2 Getting Help and Information

What should you do if the information provided by a call to the help() function
is insufficient or if you don’t know the name of the function that you want to use?
You may not even know whether a function to perform a specific task exists in the
standard R distribution or in one of the contributed packages on CRAN. This is
not an insignificant problem, for there are hundreds of functions in the standard R
packages and many thousands of functions in the more than 12,000 packages on
CRAN.

Although there is no completely adequate solution to this problem, there are
several R resources beyond help() and ? that can be of assistance:

• The apropos() command searches for currently accessible objects whose
names contain a particular character string.26 For example,

apropos("log")

. . .
[11] "is.logical" "log"
[13] "log10" "log1p"
[15] "log2" "logb"
[17] "Logic" "logical"
. . .

If we’re looking for a function to compute logs, this command turns up some
relevant results (e.g., log, log10) and many irrelevant ones.

25 The Stop button only appears during a computation.
26 The apropos() function can also search for character patterns called regular expressions (which are
discussed in Section 2.6).
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24 ■ 1. Getting Started With R and RStudio

• Casting a broader net, the help.search() command examines the titles
and certain other fields in the help pages of all R packages installed in your
library, showing the results in the RStudio Help tab (which also has its
own search box, at the top right of the tab). For example, try the com-
mand help.search("loglinear") to find functions related to loglin-
ear models (discussed in Section 6.6). The ?? operator is a synonym for
help.search(), for example, ??loglinear.

• If you have an active internet connection, you can search even more broadly
with the RSiteSearch() function. For example, to look in all standard
and CRAN packages, even those not installed on your system, for functions
related to loglinear models, you can issue the command

RSiteSearch("loglinear", restrict="functions")

The results appear in a web browser. See help("RSiteSearch") for
details.

• The CRAN task views are documents that describe resources in R for applica-
tions in specific areas, such as Bayesian statistics, econometrics, psychomet-
rics, social statistics, and spatial statistics. There are (at the time of writing)
more than 30 task views, available via the command carWeb("taskviews")
(using the carWeb() function from the car package), directly by pointing
your web browser at https://cran.r-project.org/web/views/, or
in the home screen of the RStudio Help tab.

• The command help(package="package-name"), for example,
help(package="car"), displays information about an installed package
in the RStudio Help tab, including a hyperlinked index of help topics doc-
umented in the package.

• Some packages contain vignettes, discursive documents describing the use
of the package. To find out what vignettes are available in the packages in-
stalled on your system, enter the command vignette(). The command
vignette(package="package-name") displays the vignettes available
in a particular installed package, and the command vignette("vignette-
name") or vignette("vignette-name",package="package-name")
opens a specific vignette.

• R and RStudio have a number of resources and references available, both
locally and on the internet. An index to the key resources can be obtained on
the RStudio Help tab by clicking on the Home icon in the toolbar at the
top of the tab.

• Help on R is available on the internet from many other sources. A
Google search for R residualPlot, for example, will lead to a page at
https://www.rdocumentation.org for the residualPlot() func-
tion in the car package. The web page https://www.r-project.org/
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1.4. Organizing Your Work in R and RStudio ■ 25

help.html has several suggestions for getting help with R, including infor-
mation on theR email lists and the StackOverflow@StackOverflowwebsite
discussed in the Preface to this book. Also see http://search.r-project
.org/.

1.4 Organizing Your Work in R and RStudio
and Making It Reproducible

If you organize your data analysis workflow carefully, you’ll be able to understand
what you did even after some time has elapsed, to reproduce and extend your work
with a minimum of effort, and to communicate your research clearly and precisely.
RStudio has powerful tools to help you organize your work in R and to make it
reproducible. Working in RStudio is surprisingly simple, and it is our goal in this
section to help you get started. As you become familiar withRStudio, you may wish
to consult the RStudio documentation, conveniently accessible from the Help tab,
as described at the end of the preceding section, to learn to do more.

We showed in Section 1.2.1 how to interact with the R interpreter by typing
commands directly in the Console, but that’s not generally an effective way to
work with R. Although commands typed into the Console can be recovered from
the History tab and by the up- and down-arrow keys at the command prompt, no
permanent and complete record of your work is retained. That said, it sometimes
makes sense to type particular commands directly at the R command prompt—for
example, help() and install.packages() commands—but doing so more
generally is not an effective way to organize your work.

We’ll describe two better strategies here: writing annotated scripts of R com-
mands and writing R Markdown documents.27

If you have not already done so, we suggest that you now create an RStudio
project named R-Companion, as described in Section 1.1. Doing so will give you
access to several files used both in this section and elsewhere in the book.

1.4.1 Using the RStudio Editor With R Script Files

An R script is a plain-text document containing a sequence of R commands. Rather
than typing commands directly at the R command prompt, you enter commands
into the script and execute them from the script, either command by command,
several selected commands at once, or the whole script as a unit. Saving the script
in a file creates a permanent record of your work that you can use to reproduce,
correct, and extend your data analysis.

27 RStudio is also capable of creating and working with other kinds of documents. For example, we wrote
this book in LATEX using RStudio and the knitr package (Xie, 2015, 2018), which support the creation of
LATEX documents that incorporateR code, in the same manner asRMarkdown supports the incorporation
of R code in a Markdown document.
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26 ■ 1. Getting Started With R and RStudio

RStudio makes it easy to create, work with, and manage R scripts. A new script
is created by selecting File > New File > R Script from the RStudio menus. The
first time that you do this, a new source-editor pane will open on the top left of the
RStudiowindow, and theConsolewill shrink to create space for the new pane. You
should now have one tab, called Untitled1, in the source pane. When you create
a new script in this manner, you should normally save the script in your project
directory, using File > Save, and giving the script a file name ending in the file
type .R. RStudio saves R script files as plain-text files.

RStudio recognizes files with extension .R or .r as R scripts and handles these
files accordingly, for example by highlighting the syntax of R code (e.g., comments
are colored green by default), by automatically indenting continuation lines of mul-
tiline R commands as you enter them, and by providing tools for executing R com-
mands.28 In a subsequent session, you can reopen an existing R script file in several
ways: The simplest method is to click on the file’s name in the RStudio Files tab.
Alternatively, you can use the File > Open File or File > Recent Files menu.
Finally, files that were open in tabs in the RStudio source-editor pane at the end
of a session are reopened automatically in a subsequent session.

If you liberally sprinkle your R scripts with explanatory comments and notes,
you’ll be in a better position to understand what you did when you revisit a script at
some future date. Scripts provide a simple and generally effective, if crude, means
of making your work reproducible.

The file chap-1.R that you downloaded to your project folder in Section 1.1
includes all theR commandsused inChapter 1of theR Companion. Figure 1.4 shows
this script open in the RStudio source-editor pane, along with the Console pane.
As with most editors, you can click the mouse anywhere you like and start typing.
You can erase text with the Delete or Backspace key. Common editing gestures
are supported, like double-clicking to select a word, triple-clicking to select a whole
line, and left-clicking and dragging the mouse across text to select it. In Figure 1.4,
we clicked and dragged to select five lines, and then pressed theRun button at the top
right of the source pane. The selected commands were sent to the R interpreter, as if
they had been typed directly at the R command prompt; both the input commands
and associated printed output appear in the Console, as shown in Figure 1.4.

Some controls in the RStudio editor depend on the type of file that you are
editing. After a while, you will likely find these context-dependent changes to be
intuitive. For .R files, important editing operations are located in the RStudio File
and Editmenus, and in the toolbar at the top of the file tab, as shown in Figure 1.4.

• To save a file, use the Save or Save as items in the File menu, click on the
disk image in the main toolbar at the top of the source-editor pane, or click
on the disk image in the toolbar at the top of the document tab.

• To find a text string, or to find and replace text, either click on the spyglass
in the toolbar at the top of the document tab, or select Edit> Find from the
RStudio menus. Finding and replacing text works as it does in most editors.

28 You can customize the RStudio editor in the Appearance tab on Tools > Global Profile
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1.4. Organizing Your Work in R and RStudio ■ 27

Figure 1.4 The left-hand panes of the RStudio window. The script files
chap-1.R and Untitled1 are in the source-editor pane (at the top).
We highlighted several commands in chap-1.R by left-clicking and
dragging the mouse over them and caused these commands to be
executed by pressing the Run button in the toolbar at the top right
of the editor tab for the file. The commands and resulting output
appear in the R Console pane (at the bottom).

• To run selected code, click on the Run button at the right of the toolbar
above the document tab. To run a single line of code, put the cursor in that
line and press Run. You can also choose Code> Run Selected Line(s) from
the RStudio menus.

• If Source on Save at the top left of the document tab is checked, then when-
ever you save the script file, all of its contents are sent to the R interpreter
(i.e., the file is “sourced”). Similarly, the Source button at the top right of
the document tab sends all of the commands in the script to the interpreter
but without saving the file. The Source button is actually a menu; click on
its inverted triangle to see the various options.

All of these actions have keyboard equivalents that you can discover from the
menu items or (in most cases) by hovering your mouse over the toolbar icons. Two
key-combinations that we use frequently areCtrl-F (onWindows) or command-
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28 ■ 1. Getting Started With R and RStudio

Figure 1.5 Snippet from the RStudio source error showing the definition of a
function that contains unmatched parentheses. The error is flagged
by the x-marks to the left of the lines in the function definition.

F (on macOS), which opens the find/replace tool, and Ctrl-Enter or command-
return, which runs the currently selected command or commands. You can open a
window with all of RStudio’s many keyboard equivalents via the key-combination
Alt-Shift-K (or option-shift-K on a Mac).

The RStudio editor has sophisticated tools for writing R code, including tools
that are very helpful for finding and correcting errors, such as bugs in user-defined
functions.29 For example, the snippet from the source editor shown in Figure 1.5
contains code defining a function that will not run correctly, as indicated by the
(red) x-marks to the left of the numbers of the offending lines. Hovering the mouse
over one of the x-marks reveals the problem, an unmatched opening parenthesis.
Of course, RStudio can’t tell where you want the missing closing parenthesis to go.
When you insert the matching parenthesis, the error marks go away.

The editor and, for that matter, the Console automatically insert and check
for matching parentheses, square brackets, curly braces, and quotation marks. The
automatic insertion of delimiters can be unnerving at first, but most users eventually
find this behavior helpful.30

1.4.2 Writing R Markdown Documents

R Markdown documents take script files to a new level by allowing you to mix R
commandswith explanatory text.Thinkof anRMarkdowndocument as anR script
on steroids. YourR Markdown source document is compiled into an output report
evaluating the R commands in the source document to produce easily reproducible
results in an aesthetically pleasing form.Webelieve that formost readers of this book,
R Markdown is the most effective means of using R for statistical data analysis.

Markdown, on which R Markdown is based, is a simple, punningly named,
text-markup language, with simple conventions for adding the main features of a
typeset document, such as a title, author, date, sections, bulleted and numbered
lists, choices of fonts, and so on. R Markdown enhances Markdown by allowing
you to incorporate code chunks of R commands into the document. You can press
the Knit button in the toolbar at the top left of the tab containing an R Mark-
down document tab to compile the document into a typeset report. When an R

29 RStudio also incorporates tools for debugging R programs; see Section 10.8.
30 If automatic insertion of delimiters annoys you, you can turn it off in the General tab of the Tools >
Global Options dialog. Indeed, many features of the RStudio editor can be customized in the General,
Code, and Appearance tabs of this dialog, so if you encounter an editor behavior that you dislike, you
can probably change it.
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1.4. Organizing Your Work in R and RStudio ■ 29

Figure 1.6 The New R Markdown dialog box, produced by selecting File >
New File > R Markdown from the RStudio menus.

Markdown document is compiled, the R commands in the document are run in
an independent R session, and the commands and associated output appear in the
report that is produced—just as the commands and output would have appeared in
the Console or the Plots tab if you had typed the R commands in the document
into the Console. As we will explain, it is also possible to display R text output and
graphical output associated with a code chunk directly in the R Markdown source
document.

R Markdown is sufficiently simple that most users will be able to produce at-
tractively typeset reports using only the instructions we supply here. If you want to
learn more about R Markdown, you can select Help > Markdown Quick Refer-
ence from the RStudio menu, which will open the Markdown Quick Reference in
the RStudio Help tab. This document summarizes many of the formatting com-
mands available in Markdown and has a link to more detailed information on the
RStudio website. The R Markdown “cheatsheet,” from Help > Cheatsheets,
provides similar information in a compact form that is suitable for printing. Fi-
nally, for a book-length treatment of R Markdown and other kinds of dynamic R
documents, consult Xie (2015).31

You can create a new R Markdown document by selecting File > New File
> R Markdown. . . from the RStudio menus, producing the dialog box shown in
Figure 1.6. Fill in the Title field in the dialog with Test of RMarkdown and the
Author field with your name. Leave the other selections at their defaults, creating

31 Xie (2015) is written by the author of the knitr package and a coauthor of the rmarkdown package;
these packages are the mechanism that RStudio uses to compile R Markdown documents into reports.
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30 ■ 1. Getting Started With R and RStudio

Figure 1.7 The skeleton R Markdown file produced by the menu selection File
> New File > R Markdown. . ..

a document that will produce an HTML (web-page) report.32

A skeleton R Markdown source document opens in a tab in the RStudio
source-editor pane, as shown in Figure 1.7. We recommend that you immediately
rename and save this document as a file of type .Rmd, say RMarkdownTest.Rmd.
The source document consists of three components: a header, comprising the first
six lines; ordinary free-form discursive text, intermixed with simple Markdown
formatting instructions; and code chunks of commands to be executed by the R
interpreter when the source document is compiled into a report.

The document header is filled in automatically and includes title, author, date,
and output format fields. You can edit the header as you can edit any other part of
the R Markdown document. Consult the R Markdown documentation for more
information on the document header.

32 If you want to produce PDF output, you must first install LATEX on your computer; instructions for
downloading and installing LATEX are given in the Preface. Once LATEX is installed,RStudiowill find and use
it. Another option is to produce aWord document. We discourage you from doing so, however, because you
may be tempted to edit the Word document directly, rather than modifying the R Markdown document
that produced it, thus losing the ability to reproduce your work.
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1.4. Organizing Your Work in R and RStudio ■ 31

The text component of the document can include simple Markdown format-
ting instructions. For example, any line that begins with a single # is a major section
heading, ## is a secondary section heading, and so on. The Markdown Quick Refer-
ence lists formatting markup for italics, bold face, bulleted and numbered lists, and
so on. Text surrounded by back-ticks, for example, `echo = FALSE`, is set in a
typewriter font, suitable for representing computer code or possibly variable names.

R code chunks appear in gray boxes in an R Markdown document and are
demarcated by the line ```{r} at the top of the chunk and the line ``` (three
back-ticks) at the bottom. The initial line may also include chunk options. You can
name a chunk—for example, setup in the first chunk in the sample document and
cars in the second chunk—or supply other options, such as echo=FALSE, which
suppresses printing the commands in a block in the compiled report, showing only
the output from the commands, or include=FALSE, which suppresses printing
both the commands and associated output. If multiple chunk options are supplied,
they must be separated by commas. For more information about R Markdown
chunk options, see the webpage at https://yihui.name/knitr/options/,
or click the gear icon at the top right of a code chunk and follow the link to Chunk
options.

You can insert a new code chunk in your R Markdown document manually by
typing the initial line ```{r} and terminal line ``` or by positioning the cursor at
the start of a line and pressing the Insert button near the top right of the document
tab and selecting R from the resulting drop-down list. Click on the gear icon at the
top right of a gray code chunk to set some chunk options. The other two icons at
the top right of the code chunk allow you to run either all the code chunks before
the current chunk (the down-pointing triangle) or to run the current code chunk
(the right-pointing triangle). Hover the mouse cursor over each icon for a “tool tip”
indicating the function of the icon.

The body of each code chunk consists of commands to be executed by the R
interpreter, along with comments beginning with #, which the interpreter will ig-
nore. The various chunk options tell R Markdown how to treat the R input and
output in the HTML document that it produces. Almost any R commands may be
included in a code chunk.33

In addition to code chunks of R commands, you can include in-line executable
R code, between `r and another back-tick, `. For example, a sentence in your R
Markdown document that reads

The number of combinations of six items taken two at
a time is `r choose(6, 2)`.

would be typeset by evaluating the R command choose(6, 2) and replacing the
command with its value, 15—the number of ways of choosing two objects from
among six objects, computed by the choose() function:

33 It is best, however, to avoid commands that require direct user intervention; examples of such commands
include identify(), for interactive point identification in a plot, and file.choose() for interactive
file selection.
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32 ■ 1. Getting Started With R and RStudio

Figure 1.8 Part of the illustrative R Markdown document (displayed in its
entirety in Figure 1.7) as it appears in RStudio. The in-document
output was produced by pressing the arrow at the top right of each
code chunk to run the code in the chunk.

The number of combinations of six items taken two at a time is 15.

Moreover, if your document assigns values to the variables n <- 6 and k <- 2
in a previous code chunk, you could replace choose(6, 2) with chose(n, k),
and R would substitute the values of these variables correctly into the command.

Turning RMarkdownTest.Rmd into a typeset report can be accomplished ef-
fortlessly by pressing the Knit button at the top left of the source document tab.34

34 This procedure is essentially effortless only if there are no errors in an R Markdown document. Errors
in code chunks typically produce R error messages, and fixing these errors is no different from debugging
a script (see Section 1.3.1). You should, however, debug the code chunks interactively before compiling the
document, as we will explain presently. Markdown errors, in contrast, may cause the document to fail to
compile or may result in undesired formatting in the typeset report. Particularly if the document fails to
compile, you should examine the output in the R Markdown tab, which appears in the lower-right pane
in RStudio alongside the Console and may contain informative error messages.
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1.5. An Extended Illustration ■ 33

The resulting report, RMarkdownTest.html, is displayed in RStudio’s built-in
web-page viewer and is automatically saved in your project directory. R code in the
report appears in gray boxes, and associated text output appears in white boxes im-
mediately below the command or commands that produced it. The R >
command prompt is suppressed, and each line of output is preceded by two R
comment characters, ##. The rationale for formatting commands and output in
this manner is that commands can then be copied and pasted directly into R scripts
or at the R command prompt without having to remove extraneous >s, while out-
put preceded by ## will be treated as R comments. If you prefer to include the
command prompts and suppress the hash-marks in the compiled document, you
can alter the first code chunk in the document to read

```{r setup, include=FALSE, eval=FALSE}
knitr::opts_chunk$set(echo=TRUE, prompt=TRUE, comment="")
```

When you develop an R script, you normally execute commands as you write
them, correcting and elaborating the commands in a natural manner. R Mark-
down source documents support a similar style of work: After you type a new
command into a code chunk, you can execute it by pressing the Run button at
the top of the document tab and choosing Run Selected Line(s) from the drop-
down list, pressing the key-combinationControl-Enter (as you would for a script),
or selecting Code > Run Selected Line(s) from the RStudio menus. The com-
mand is executed in the R Console, and any output from the command—both
text and graphics—appears as well in the source-editor tab for the R Markdown
document. This in-document output is independent of the web-page report that’s
produced when you compile the whole document. You can, consequently, maxi-
mize the editor pane, covering theConsole, and still see the output. We recommend
this approach to developing R Markdown documents interactively.

You can also execute an entire code chunk by selecting Run Current Chunk
from the Run button list or via Code > Run Current Chunk. Alternatively, and
most conveniently, each code chunk has small icons at the upper right of the chunk;
the right-pointing arrow runs the code in the chunk, displaying output immediately
below. See Figure 1.8 for an example.

1.5 An Extended Illustration: Duncan's
Occupational-Prestige Regression

In this section, we use standard R functions along with functions in the car package
in a typical linear regression problem. An R Markdown document that repeats all
the R commands, but with minimal explanatory text, is in the file Duncan.Rmd
that you downloaded to your R-Companion project in Section 1.1.35 Following
the instructions in Section 1.4.2, you can typeset this document by clicking on

35 If you choose not to create an R-Companion project, you can still obtain this file by the command
carWeb(file="Duncan.Rmd"), which downloads the file to your RStudio working directory.
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34 ■ 1. Getting Started With R and RStudio

Duncan.Rmd in the RStudio Files tab to open the document in the source editor
and then clicking the Knit button in the toolbar at the top of the document tab.

The data for this example are in the carData package, which is automatically
loaded when you load the car package, as we’ve done earlier in this chapter. Working
with your own data almost always requires the preliminary work of importing the
data from an external source, such as an Excel spreadsheet or a plain-text data file.
After the data are imported, you usually must perform various data management
tasks to prepare the data for analysis. Importing and managing data in R are the
subject of the next chapter.

The Duncan data set that we use in this section was originally analyzed by the
sociologist Otis Dudley Duncan (1961). The first 10 lines of the Duncan data frame
are printed by the head() command:

head(Duncan, n=10)

type income education prestige
accountant prof 62 86 82
pilot prof 72 76 83
architect prof 75 92 90
author prof 55 90 76
chemist prof 64 86 90
minister prof 21 84 87
professor prof 64 93 93
dentist prof 80 100 90
reporter wc 67 87 52
engineer prof 72 86 88

dim(Duncan)

[1] 45 4

A data frame is the standard form of a rectangular data set in R, a two-dimensional
array of data with columns corresponding to variables and rows corresponding to
cases or observations (see Section 2.3). The first line of the output shows the names
for the variables, type, income, education, and prestige. Each subsequent
line contains data for one case. The cases are occupations, and the first entry in
each line is the name of an occupation, generally called a row name. There is no
variable in the data frame corresponding to the row names, but you can access the
row names by the command row.names(Duncan) or rownames(Duncan). The
dim() (“dimensions”) command reveals that the Duncan data frame has 45 rows
(cases) and four columns (variables). Because this is a small data set, you could print
it in full in the Console simply by entering its name, Duncan, at the R command
prompt. You can also open the data frame in a spreadsheet-like tab in the RStudio
source-editor pane by entering the command View(Duncan).36

The definitions of the variables in Duncan’s data set are given by help("Duncan")
and are as follows:

36 The View() function shouldn’t be used in an R Markdown document, however, because it creates
output outside the Console and Plots tab. Although the RStudio data set viewer looks like a spreadsheet,
you can’t edit a data frame in the viewer.
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1.5. An Extended Illustration ■ 35

• type: Type of occupation, prof (professional and managerial), wc (white-
collar), or bc (blue-collar)

• income: Percentage of occupational incumbents in the 1950 U.S. Census
who earned $3,500 or more per year (about $36,000 in 2017 U.S. dollars)

• education: Percentage of occupational incumbents in 1950 who were high
school graduates (which, were we cynical, we would say is roughly equivalent
to a PhD in 2017)

• prestige: Percentage of respondents in a social survey who rated the occu-
pation as “good” or better in prestige

The variable type has character strings for values rather than numbers, and is
calleda factorwith the three levelsorcategories"prof","wc", and"bc".37 Theother
variables are numeric.Duncanused a linear least-squares regression of prestigeon
income andeducation to predict the prestige of occupations forwhich the income
and educational scores were known from the U.S. Census but for which there were
no direct prestige ratings. He did not use occupational type in his analysis.

This is a small data frame in an era of “big data,” but, for several reasons, we
think that it makes a nice preliminary example:

• Duncan’s use of multiple regression to analyze the data was unusual at the
time in sociology, and thus his analysis is of historical interest.

• Duncan’s methodology—using a regression for a subset of occupations to
impute prestige scores for all occupations—is still used to create occupational
socioeconomic status scales and consequently is not just of historical interest.

• The story of Duncan’s regression analysis is in part a cautionary tale, remind-
ing us to check that our statistical models adequately summarize the data at
hand.

The generic summary() function has a method that is appropriate for data
frames. As described in Section 1.7, generic functions adapt their behavior to their
arguments. Thus, a function such as summary() may be used appropriately with
many different kinds of objects. This ability to reuse the same generic function for
many similar purposes is one of the strengths of R. When applied to the Duncan
data frame, summary() produces the following output:

summary(Duncan)

type income education prestige
bc :21 Min. : 7.0 Min. : 7.0 Min. : 3.0
prof:18 1st Qu.:21.0 1st Qu.: 26.0 1st Qu.:16.0
wc : 6 Median :42.0 Median : 45.0 Median :41.0

Mean :41.9 Mean : 52.6 Mean :47.7
3rd Qu.:64.0 3rd Qu.: 84.0 3rd Qu.:81.0
Max. :81.0 Max. :100.0 Max. :97.0

37 For efficiency of storage, values of a factor are actually coded numerically as integers, and the corre-
sponding level names are recorded as an attribute of the factor. See Chapter 2 and Section 4.7 for more on
working with factors.
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36 ■ 1. Getting Started With R and RStudio
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Figure 1.9 Histogram for prestige in Duncan’s data frame.

The function counts the number of cases in each level of the factor type and reports
the minimum, maximum, median, mean, and the first and third quartiles for each
numeric variable, income, education, and prestige.

1.5.1 Examining the Data

A sensible place to start any data analysis, including a regression analysis, is to visu-
alize the data using a variety of graphical displays. Figure 1.9, for example, shows a
histogram for the response variable prestige, produced by a call to the hist()
function:

with(Duncan, hist(prestige))

The with() function makes the prestige variable in the Duncan data frame
available to hist().38 The hist() function doesn’t return a visible value in the
R console but rather is used for the side effect of drawing a graph, in this case a his-
togram.39 Entering the hist() command from an R script displays the histogram
in the RStudio Plots tab; entering the command in an R Markdown document

38 The general format of a call to with() is with(data-frame, R-command), where R-command could
be a compound expression enclosed in braces, { }, and comprising several commands, each command on its
own line or separated from other commands by semicolons. We discuss managing and using data in data
frames in Chapter 2.
39 Like all R functions, hist() does return a result; in this case, however, the result is invisible and is a list
containing the information necessary to draw the histogram. To render the result visible, put parentheses
around the command: (with(Duncan, hist(prestige))). Lists are discussed in Section 2.4.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



1.5. An Extended Illustration ■ 37

displays the graph directly in the document and in theHTML report compiled from
the R Markdown document.

The distribution of prestige appears to be bimodal, with cases stacking up
near the boundaries, as many occupations are either low prestige, near the lower
boundary, or high prestige, near the upper boundary, with relatively fewer occupa-
tions in the middle bins of the histogram. Because prestige is a percentage, this
behavior is not altogether unexpected. Variables such as this often need to be trans-
formed, perhaps with a logit (log-odds) or similar transformation, as discussed in
Section 3.4. Transforming prestige turns out to be unnecessary in this problem.

Before fitting a regression model to the data, we should also examine the distri-
butions of the predictors education and income, along with the relationship be-
tween prestige and each predictor, and the relationship between the two predic-
tors.40 The scatterplotMatrix() function in the car package associated with
this book allows us to conveniently examine these distributions and relationships.41

scatterplotMatrix( ~ prestige + education + income,
id=list(n=3), data=Duncan)

The scatterplotMatrix() function uses a one-sided formula to specify the vari-
ables to appear in the graph, where we read the formula ~ prestige + educa-
tion + income as “plot prestige and education and income.” The data ar-
gument tells scatterplotMatrix()where to find the variables.42 The argument
id=list(n=3) tells scatterplotMatrix() to identify the three most unusual
points in each panel.43 Weadded this argument after examining a preliminary plot of
the data. Using a script or typing the scatterplotMatrix() command directly
into the Console causes the graph to be shown in the RStudio Plots tab. You can
view a larger version of the graph in its own window by pressing the Zoom button
at the top of the Plots tab. As explained in Section 1.4.2, if you’re working in an R
Markdown document, you can display the graph directly in the source document.

The scatterplot matrix for prestige, education, and income appears in
Figure 1.10. The variable names in the diagonal panels label the axes. The scat-
terplot in the upper-right-hand corner, for example, has income on the horizontal
axis and prestige on the vertical axis. By default, nonparametric density estimates,
using an adaptive-kernel estimator, appear in the diagonal panels, with a rug-plot
(“one-dimensional scatterplot”) at the bottom of each panel, showing the location
of the data values for the corresponding variable.44 There are several lines on each
scatterplot:

40 We will ignore the additional predictor type, which, as we mentioned, didn’t figure in Duncan’s analysis
of the data.
41 Because we previously loaded the car package for access to the Duncan data frame, we do not need to
do so again.
42 We’ll encounter formulas again when we specify a regression model for Duncan’s data (in Section 1.5.2),
and the topic will be developed in detail in Chapter 4 on linear models, particularly in Section 4.9.1.
43 Point identification in the car package is explained in Section 3.5.
44 Other choices are available for the diagonal panels, including histograms. We discuss scatterplot-
Matrix() and other graphics functions in the car package for exploring data in Section 3.3.
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Figure 1.10 Scatterplot matrix for prestige, education, and income in
Duncan’s data, identifying the three most unusual points in each
panel. Nonparametric density estimates for the variables appear in
the diagonal panels, with a rug-plot (one-dimensional scatterplot)
at the bottom of each diagonal panel.

• The solid line shows the marginal linear least-squares fit for the regression of
the vertical-axis variable (y) on the horizontal-axis variable (x), ignoring the
other variables.

• The central broken line is a nonparametric regression smooth, which traces
how the average value of y changes as x changes without making strong as-
sumptions about the form of the relationship between the two variables.45

• The outer broken lines represent smooths of the conditional variation of the
y values given x in each panel, like running quartiles.

Like prestige, education appears to have a bimodal distribution. The dis-
tribution of income, in contrast, is perhaps best characterized as irregular. The
pairwise relationships among the variables seem reasonably linear, which means

45 Scatterplot smoothers in the car package are discussed in Section 3.2.1.
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1.5. An Extended Illustration ■ 39

that as we move from left to right across the plot, the average y values of the points
more or less trace out a straight line. The scatter around the regression lines appears
to have reasonably constant vertical variability and to be approximately symmetric.

In addition, two or three cases stand out from the others. In the scatterplot
of income versus education, ministers are unusual in combining relatively low
income with a relatively high level of education, and railroad conductors and
engineers are unusual in combining relatively high levels of income with relatively
low education. Because education and income are predictors in Duncan’s re-
gression, these three occupations will have relatively high leverage on the regression
coefficients. None of these cases, however, are outliers in the univariate distribu-
tions of the three variables.

1.5.2 Regression Analysis

Duncan was interested in how prestige is related to income and education in
combination. We have thus far addressed the univariate distributions of the three
variables and the pairwise or marginal relationships among them. Our plots don’t
directly address the joint dependence of prestige on education and income.
Graphs for this purpose will be discussed in Section 1.5.3.

Following Duncan, we next fit a linear least-squares regression to the data to
model the joint dependence of prestige on the two predictors, under the as-
sumption that the relationship of prestige to education and income is addi-
tive and linear:
(duncan.model <- lm(prestige ~ education + income, data=Duncan))

Call:
lm(formula = prestige ~ education + income, data = Duncan)

Coefficients:
(Intercept) education income

-6.065 0.546 0.599

Like the scatterplotMatrix() function, the lm() (linear model) function uses
a formula to specify the variables in the regression model, and the data argument
to tell the function where to find these variables. The formula argument to lm(),
however, has two sides, with the response variable prestige on the left of the tilde
( ~ ). The right-hand side of the model formula specifies the predictor variables in
the regression, education and income. We read the formula as “prestige is
regressed on education and income.”46

The lm() function returns a linear-model object , which we assign to
duncan.model. The name of this object is arbitrary—any valid R name would
do. Enclosing the command in parentheses causes the assigned object to be printed,
in this instance displaying a brief report of the results of the regression. The sum-
mary() function produces a more complete report:

46 You’ll find much more information about linear-model formulas in R in Chapter 4, particularly Sec-
tion 4.9.1.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



40 ■ 1. Getting Started With R and RStudio

summary(duncan.model)

Call:
lm(formula = prestige ~ education + income, data = Duncan)

Residuals:
Min 1Q Median 3Q Max

-29.54 -6.42 0.65 6.61 34.64

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.0647 4.2719 -1.42 0.16
education 0.5458 0.0983 5.56 1.7e-06 ***
income 0.5987 0.1197 5.00 1.1e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.4 on 42 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: 0.82
F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

Both education and income have large regression coefficients in the Estimate
column of the coefficient table, with small two-sided p-values in the column labeled
Pr(>|t|). For example, holding education constant, a 1% increase in higher
income earners is associated on average with an increase of about 0.6% in high
prestige ratings.

R writes very small and very large numbers in scientific notation. For example,
1.1e-05 is to be read as 1.1× 10−5, or 0.000011, and 2e-16 = 2× 10−16, which
is effectively zero.

If you find the “statistical-significance” asterisks that R prints to the right of the
p-values annoying, as we do, you can suppress them, as we will in the remainder of
the R Companion, by entering the command:47

options(show.signif.stars=FALSE)

Linear models are described in much more detail in Chapter 4.

1.5.3 Regression Diagnostics

To assume that Duncan’s regression in the previous section adequately summarizes
the data does not make it so. It is therefore wise after fitting a regression model
to check the fit using a variety of graphs and numeric procedures. The standard R
distribution includes some facilities for regression diagnostics, and the car package
substantially augments these capabilities.

The "lm" object duncan.model contains information about the fitted regres-
sion, and so we can employ the object in further computations beyond producing a

47 It’s convenient to put this command in your .Rprofile file so that it’s executed at the start of each R
session, as we explained in the Preface (page xxii). More generally, the options() function can be used to
set a variety of global options in R; see ?options for details.
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Figure 1.11 Nonparametric density estimate for the distribution of the
Studentized residuals from the regression of prestige on
education and income.

printed summary of the model. More generally, the ability to manipulate statistical
models as objects is a strength of R. The rstudent() function, for example, uses
some of the information in duncan.model to calculate Studentized residuals for the
model. A nonparametric density estimate of the distribution of Studentized resid-
uals, produced by the densityPlot() function in the car package and shown in
Figure 1.11, is unremarkable:

densityPlot(rstudent(duncan.model))

Observe the sequence of operations here: rstudent() takes the linear-model ob-
ject duncan.model, previously computed by lm(), as an argument, and returns
the Studentized residuals as a result, then passes the residuals as an argument to
densityPlot(), which draws the graph. This style of command, where the result
of one function becomes an argument to another function, is common in R.

If the errors in the regression are normally distributed with zero means and con-
stant variance, then the Studentized residuals are each t-distributed with n− k− 2
degrees of freedom, where k is the number of coefficients in the model, excluding
the regression constant, and n is the number of cases. The generic qqPlot() func-
tion from the car package, which makes quantile-comparison plots, has a method for
linear models:

qqPlot(duncan.model, id=list(n=3))

minister reporter contractor
6 9 17

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



42 ■ 1. Getting Started With R and RStudio

−2 −1 0 1 2

−
2

−
1

0
1

2
3

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(d

un
ca

n.
m

od
el

) minister

reporter

contractor

Figure 1.12 Quantile-comparison plot for the Studentized residuals from the
regression of prestige on education and income. The broken
lines show a bootstrapped pointwise 95% confidence envelope for
the points.

The resulting quantile-comparison plot is shown in Figure 1.12. The qqPlot()
function extracts the Studentized residuals and plots them against the quantiles of
the appropriate t-distribution. If the Studentized residuals are t-distributed, then
the plotted points should lie close to a straight line. The solid comparison line on
the plot is drawn by default by robust regression. The argument id=list(n=3)
identifies the three most extreme Studentized residuals, and qqPlot() returns the
names and row numbers of these cases.

In this case, the residuals pull away slightly from the comparison line at both
ends, suggesting that the residual distribution is a bit heavy-tailed. This effect is
more pronounced at the upper end of the distribution, indicating a slight positive
skew.

By default, qqPlot() also produces a bootstrapped pointwise 95% confidence
envelope for the Studentized residuals that takes account of the correlations among
them (but, because the envelope is computed pointwise, does not adjust for simulta-
neous inference). The residuals stay nearly within the boundaries of the envelope at
both ends of the distribution, with the exception of the occupation minister.48 A
test based on the largest (absolute) Studentized residual, using the outlierTest()
function in the car package, however, suggests that the residual for ministers is not
terribly unusual, with a Bonferroni-corrected p-value of 0.14:

48 The bootstrap procedure used by qqPlot() generates random samples, and so the plot that you see
when you duplicate this command will not be identical to the graph shown in the text.
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Figure 1.13 Index plots of Cook’s distances and hat-values, from the regression
of prestige on income and education.

outlierTest(duncan.model)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p
minister 3.1345 0.0031772 0.14297

We proceed to check for high-leverage and influential cases by using the in-
fluenceIndexPlot() function from the car package to plot hat-values (Sec-
tion 8.3.2) and Cook’s distances (Section 8.3.3) against the case indices:

influenceIndexPlot(duncan.model, vars=c("Cook", "hat"),
id=list(n=3))

The two index plots are shown in Figure 1.13. We ask to identify the three biggest
values in each plot.

Because the cases in a regression can be jointly as well as individually influen-
tial, we also examine added-variable plots for the predictors, using the avPlots()
function in the car package (Section 8.2.3):

avPlots(duncan.model,
id=list(cex=0.75, n=3, method="mahal"))
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Figure 1.14 Added-variable plots for education and income in Duncan’s
occupational-prestige regression.

The id argument, which has several components here, customizes identification
of points in the graph:49 cex=0.75 (where cex is a standard R argument for
“character expansion”) makes the labels smaller, so that they fit better into the
plots; n=3 identifies the three most unusual points in each plot; and method=
"mahal" indicates that unusualness is quantified by Mahalanobis distance from
the center of the point-cloud.50

Each added-variable plot displays the conditional, rather than the marginal, rela-
tionship between the response and one of the predictors. Points at the extreme left
or right of the plot correspond to cases that have high leverage on the corresponding
coefficient and consequently are potentially influential. Figure 1.14 confirms and
strengthens our previous observations: We should be concerned about the occupa-
tions minister and conductor, which work jointly to increase the education
coefficient and decrease the income coefficient. Occupation RR.engineer has rel-
atively high leverage on these coefficients but is more in line with the rest of the data.

We next use the crPlots() function, also in the car package, to generate
component-plus-residual plots for education and income (as discussed in Sec-
tion 8.4.2):

crPlots(duncan.model)

The component-plus-residual plots appear in Figure 1.15. Each plot includes a least-
squares line, representing the regression plane viewed edge-on in the direction of
the corresponding predictor, and a loess nonparametric-regression smooth.51 The
purpose of these plots is to detect nonlinearity, evidence of which is slight here.

49 See Section 3.5 for a general discussion of point identification in car-package plotting functions.
50 Mahalanobis distances from the center of the data take account of the standard deviations of the variables
and the correlation between them.
51 See Section 3.2 for an explanation of scatterplot smoothing in the car package.
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Figure 1.15 Component-plus-residual plots for education and income in
Duncan’s occupational-prestige regression. The solid line in each
panel shows a loess nonparametric-regression smooth; the broken
line in each panel is the least-squares line.

Using the ncvTest() function in the car package (Section 8.5.1), we com-
pute score tests for nonconstant variance, checking for an association of residual
variability with the fitted values and with any linear combination of the
predictors:

ncvTest(duncan.model)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 0.3811, Df = 1, p = 0.537

ncvTest(duncan.model, var.formula= ~ income + education)

Non-constant Variance Score Test
Variance formula: ~ income + education
Chisquare = 0.6976, Df = 2, p = 0.706

Both tests yield large p-values, indicating that the assumption of constant variance
is tenable.

Finally, on the basis of the influential-data diagnostics, we try removing the cases
minister and conductor from the regression:

whichNames(c("minister", "conductor"), Duncan)

minister conductor
6 16

duncan.model.2 <- update(duncan.model, subset=-c(6, 16))
summary(duncan.model.2)

Call:
lm(formula = prestige ~ education + income, data = Duncan,

subset = -c(6, 16))
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46 ■ 1. Getting Started With R and RStudio

Residuals:
Min 1Q Median 3Q Max

-28.61 -5.90 1.94 5.62 21.55

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.4090 3.6526 -1.75 0.0870 .
education 0.3322 0.0987 3.36 0.0017 **
income 0.8674 0.1220 7.11 1.3e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.4 on 40 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.87
F-statistic: 141 on 2 and 40 DF, p-value: <2e-16

Rather than respecifying the regression model from scratch with lm(), we refit it
using the update() function, removing the two potentially problematic cases via
the subset argument to update(). We use the whichNames() function from
the car package to remind us of the indices of the two cases to be removed, min-
ister (Case 6) and conductor (Case 16).

The compareCoefs() function, also from the car package, is convenient for
comparing the estimated coefficients and their standard errors across the two re-
gressions fit to the data:

compareCoefs(duncan.model, duncan.model.2)

Calls:
1: lm(formula = prestige ~ education + income, data =

Duncan)
2: lm(formula = prestige ~ education + income, data =

Duncan, subset = -c(6, 16))

Model 1 Model 2
(Intercept) -6.06 -6.41
SE 4.27 3.65

education 0.5458 0.3322
SE 0.0983 0.0987

income 0.599 0.867
SE 0.120 0.122

The coefficients of education and income changed substantially with the dele-
tion of the occupations minister and conductor. The education coefficient
is considerably smaller and the income coefficient considerably larger than before.
Further work (not shown, but which we invite the reader to duplicate) suggests that
removing occupations RR.engineer (Case 27) and reporter (Case 9) does not
make much of a difference to the results.

Chapter 8 has much more extensive information on regression diagnostics in R,
including the use of various functions in the car package.
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1.7. Generic Functions and Their Methods* ■ 47

1.6 R Functions for Basic Statistics

The focus of the R Companion is on using R for regression analysis, broadly con-
strued. In the course of developing this subject, we will encounter, and indeed
already have encountered, a number of R functions for basic statistical methods
(mean(), hist(), etc.), but the topic is not addressed systematically.

Table 1.1 shows the names of some standard R functions for basic data analy-
sis. The R help system, through ? or help(), provides information on the usage of
these functions. Where there is a substantial discussion of a function in a later chap-
ter in the R Companion, the location of the discussion is indicated in the column
of the table marked Reference. The table is not meant to be complete.

1.7 Generic Functions and Their Methods*

Many of the most commonly used functions in R, such as summary(), print(),
and plot(), produce different results depending on the arguments passed to the
function.52 For example, the summary() function applied to different columns of
the Duncan data frame produces different output. The summary for the variable
type is the count in each level of this factor,53

summary(Duncan$type)

bc prof wc
21 18 6

while for a numeric variable, such as prestige, the summary includes the mean,
minimum, maximum, and several quantiles:

summary(Duncan$prestige)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.0 16.0 41.0 47.7 81.0 97.0

Similarly, the commands

summary(Duncan)

type income education prestige
bc :21 Min. : 7.0 Min. : 7.0 Min. : 3.0
prof:18 1st Qu.:21.0 1st Qu.: 26.0 1st Qu.:16.0
wc : 6 Median :42.0 Median : 45.0 Median :41.0

Mean :41.9 Mean : 52.6 Mean :47.7

52 The generic print() function is invoked implicitly and automatically when an object is printed by
typing the name of the object at the R command prompt or in the event that the object returned by a
function isn’t assigned to a variable. The print() function can also be called explicitly, however.
53 Duncan$type selects the variable type from the Duncan data frame. Indexing data frames and other
kinds of objects is discussed in detail in Section 2.4.4.
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48 ■ 1. Getting Started With R and RStudio

Table 1.1 Some R functions for basic statistical methods. All functions are in
the standard R packages; chapter references are to the R Companion.

Method R Function(s) Reference

Basic Graphs

histogram hist() Chapter 3
stem-and-leaf display stem() Chapter 3
boxplot boxplot() Chapter 3
scatterplot plot() Chapter 3
time-series plot ts.plot()

Numerical Summaries

mean mean()
median median()
quantiles quantile()
extremes range()
variance var()
standard deviation sd()
covariance matrix var(), cov()
correlations cor()

Probability
normal density, distribution, quantiles,
and random numbers

dnorm(), pnorm(), qnorm(),
rnorm()

Chapter 3

t density, distribution, quantiles, and ran-
dom numbers

dt(), pt(), qt(), rt() Chapter 3

chi-square density, distribution, quantiles,
and random numbers

dchisq(), pchisq(),
qchisq(), rchisq()

Chapter 3

F density, distribution, quantiles, and ran-
dom numbers

df(), pf(), qf(), rf() Chapter 3

binomial probabilities, distribution, quan-
tiles, and random numbers

dbinom(), pbinom(),
qbinom(), rbinom()

Chapter 3

generating random samples sample(), rnorm(), etc.
Basic Linear Models

simple regression lm() Chapter 4
multiple regression lm() Chapter 4
analysis of variance aov(), lm(), anova() Chapter 4
Contingency Tables

contingency tables xtabs(), table() Chapter 6
printing tables ftable() Chapter 6
percentage tables prop.table() Chapter 6
Simple Hypothesis Tests

t-tests for means t.test()
tests for proportions prop.test(),

binom.test()
chi-square test for independence chisq.test() Chapter 6
various nonparametric tests friedman.test(),

kruskal.test(),
wilcox.test(), etc.
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1.7. Generic Functions and Their Methods* ■ 49

3rd Qu.:64.0 3rd Qu.: 84.0 3rd Qu.:81.0
Max. :81.0 Max. :100.0 Max. :97.0

and

summary(lm(prestige ~ education + income, data=Duncan))

Call:
lm(formula = prestige ~ education + income, data = Duncan)

Residuals:
Min 1Q Median 3Q Max

-29.54 -6.42 0.65 6.61 34.64

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.0647 4.2719 -1.42 0.16
education 0.5458 0.0983 5.56 1.7e-06 ***
income 0.5987 0.1197 5.00 1.1e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.4 on 42 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: 0.82
F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

produce output appropriate to these objects—in the first case by summarizing each
column of the Duncan data frame and in the second by returning a standard sum-
mary for a linear regression model.

Enabling the same generic function, such as summary(), to be used for many
purposes is accomplished in R through an object-oriented programming technique
called object dispatch. The details of object dispatch are implemented differently in
the S3 and S4 object systems, so named because they originated in Versions 3 and
4, respectively, of the original S language on which R is based. There is yet another
implementation of object dispatch in R for the more recently introduced system of
reference classes (sometimes colloquially termed “R5”).

Almost everything created in R is an object , such as a numeric vector, a matrix,
a data frame, a linear regression model, and so on.54 In the S3 object system, de-
scribed in this section and used for most R object-oriented programs, each object
is assigned a class, and it is the class of the object that determines how generic func-
tions process the object. We won’t take up the S4 and reference-class object systems
in this book, but they too are class based and implement (albeit more complex) ver-
sions of object dispatch.

54 Indeed, everything in R that is returned by a function is an object, but some functions have side effects
that create nonobjects, such as files and graphs.
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50 ■ 1. Getting Started With R and RStudio

The class() function returns the class of an object:

class(Duncan$type)

[1] "factor"

class(Duncan$prestige)

[1] "integer"

class(Duncan)

[1] "data.frame"

The lm() function, to take another example, creates an object of class "lm":

duncan.model <- lm(prestige ~ education + income, data=Duncan)
class(duncan.model)

[1] "lm"

Generic functions operate on their arguments indirectly by calling specialized
functions, referred to as method functions or, more compactly, as methods. Which
method is invoked typically depends on the class of the first argument to the generic
function.55

For example, the generic summary() function has the following definition:

summary

function (object, ...)
UseMethod("summary")
<bytecode: 0x000000001d03ba78>
<environment: namespace:base>

As for any object, we print the definition of the summary() function by typing its
name (without the parentheses that would invoke rather than print the function).
The generic function summary() has one required argument, object, and the
special argument ... (the ellipses) for additional arguments that could vary from
one summary() method to another.56

When UseMethod("summary") is called by the summary() generic, and the
first (object) argument to summary() is of class "lm", for example, R searches
for a method function named summary.lm(), and, if it is found, executes the
command summary.lm(object, ...). It is, incidentally, perfectly possible to
call summary.lm() directly; thus, the following two commands are equivalent (as
the reader can verify):

summary(duncan.model)
summary.lm(duncan.model)

55 In contrast, in the S4 object system, method dispatch can depend on the classes of more than one
argument to a generic function.
56 You can disregard the last two lines of the output, which indicate that the function has been compiled
into byte code to improve its efficiency, something that R does automatically, and that it resides in the
namespace of the base package, one of the standard R packages that are loaded at the start of each session.
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1.7. Generic Functions and Their Methods* ■ 51

Although the generic summary() function has only one explicit argument, the
method function summary.lm() has additional arguments:

args("summary.lm")

function (object, correlation = FALSE, symbolic.cor = FALSE,
...)

NULL

Because the arguments correlation and symbolic.cor have default values
(FALSE, in both cases), they need not be specified. Thus, for example, if we enter
the command summary(duncan.model, correlation=TRUE), the argument
correlation=TRUE is absorbed by ... in the call to the generic summary()
function and then passed to the summary.lm() method, causing it to print a cor-
relation matrix for the coefficient estimates.

In this instance, we can call summary.lm() directly, but most method functions
are hidden in (not “exported from”) the namespaces of the packages in which the
methods are defined and thus cannot normally be used directly.57 In any event, it
is good R form to use method functions only indirectly through their generics.

Suppose that we invoke the hypothetical generic function fun(), defined as

fun <- function(x, ...){
UseMethod("fun")

}

with real argument obj of class "cls": fun(obj). If there is no method func-
tion named fun.cls(), then R looks for a method named fun.default(). For
example, objects belonging to classes without summary() methods are summa-
rized by summary.default(). If, under these circumstances, there is no method
named fun.default(), then R reports an error.

We can get a listing of all currently accessible methods for the generic sum-
mary() function using the methods() function, with hidden methods flagged by
asterisks:58

methods(summary)

[1] summary,ANY-method summary,diagonalMatrix-method
[3] summary,sparseMatrix-method summary.Anova.mlm*
[5] summary.aov summary.aovlist*
[7] summary.aspell* summary.boot*
. . .
[97] summary.varFunc* summary.varIdent*
[99] summary.varPower*
see '?methods' for accessing help and source code

57 For example, the summary() method summary.boot(), for summarizing the results of bootstrap
resampling (see Section 5.1.3), is hidden in the namespace of the car package. To call this function directly
to summarize an object of class "boot", we could reference the function with the unintuitive package-
qualified name car:::summary.boot(), but calling the unqualified method summary.boot() directly
won’t work.
58 The first three method functions shown, with commas in their names, are S4 methods.
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These methods may have different arguments beyond the first, and some method
functions, for example, summary.lm(), have their own help pages: ?summary.lm.

You can also determine what generic functions have currently available methods
for objects of a particular class. For example,

methods(class="lm")

[1] add1 alias anova
[4] Anova avPlot Boot
[7] bootCase boxCox case.names

. . .
[70] summary variable.names vcov
see '?methods' for accessing help and source code

Method selection is slightly more complicated for objects whose class is a vector
of more than one element. Consider, for example, an object returned by the glm()
function for fitting generalized linear models (anticipating a logistic-regression ex-
ample developed in Section 6.3.1):59

mod.mroz <- glm(lfp ~ ., family=binomial, data=Mroz)
class(mod.mroz)

[1] "glm" "lm"

If we invoke a generic function with mod.mroz as its argument, say fun(mod.
mroz), then the R interpreter will look first for a method named fun.glm(). If
a function by this name does not exist, then R will search next for fun.lm() and
finally for fun.default(). We say that the object mod.mroz is of primary class
"glm" and inherits from class "lm".60 Inheritance supports economical program-
ming through generalization.61

59 The . on the right-hand side of the model formula indicates that the response variable lfp is to be
regressed on all of the other variables in the Mroz data set (which is accessible because it resides in the
carData package).
60 If the class vector of an object has more than two elements, then the classes are searched sequentially
from left to right.
61 S3 inheritance can also get us into trouble if, for example, there is no function fun.glm() but
fun.lm() exists and is inappropriate for mod.mroz. In a case such as this, the programmer of fun.lm()
should be careful also to create a function fun.glm(), which calls the default method or reports an error,
as appropriate.
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