Regression Diagnostics
for Linear, Generalized
Linear, and
Mixed-Effects Models

egression diagnostics are methods for determining whether a fitted regression

model adequately represents the data. In this chapter, we present methods

for linear, generalized linear, and mixed-effects models, but many of the
methods described here are also appropriate for other regression models. Because
most of the methods for diagnosing problems in linear models fit by least squares
extend naturally to generalized linear and mixed-effects models, we deal at greater
length with linear-model diagnostics.

Regression diagnostics address the adequacy of a statistical model after it has been
fit to the darta. Careful thought about the problem at hand along with examination
of the data (as in Chapter 3) prior to specifying a preliminary model often avoids
problems at a later stage. Careful preliminary work doesn’t, however, guarantee the
adequacy of a regression'model, and the practice of statistical modeling is therefore
often one of iterative refinement. The methods described in this chapter can help
you to reformulate a regression model to represent the data more accurately.

Linear models make strong and sometimes unrealistic assumptions about the
structure of the data. When assumptions are violated, estimates and predictions
can behave badly and may even completely misrepresent the data. The same is true
of other parametric regression models. Regression diagnostics can reveal problems
and often point the way toward solutions.

All of the methods discussed in this chapter either are available in standard R
functions or are implemented in the car and effects packages. A few functions
that were once in earlier versions of the car package are now a standard part
of R.

An original and continuing goal of the car package is to make regression diag-
nostics readily available in R. It is our experience that diagnostic methods are much
more likely to be used when they are convenient. For example, added-variable plots,

385

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



386 MW 8. Regression Diagnostics for Linear, Generalized Linear, and Mixed-Effects Models

described in Section 8.3.3, are constructed by regressing a particular regressor and
the response on all the other regressors in the model, computing the residuals from
these auxiliary regressions, and plotting one set of residuals against the other. This is
not hard to do in R, although the steps are somewhat more complicated when there
are factors, interactions, or polynomial or regression-spline terms in the model. The
avPlots () function in the car package constructs all the added-variable plots for
a linear or generalized linear model and adds such enhancements as a least-squares
line and point identification.

¢ Section 8.1 describes various kinds of residuals in linear models.

* Section 8.2 introduces basic scatterplots of residuals, along with related plots
that are used to assess the fit of a model to data.

* Subsequent sections are specialized to particular problems, describing meth-
ods for diagnosis and at least touching on possible remedies. Section 8.3 in-
troduces methods for detecting unusual data, including oudliers, high-leverage
points, and influential cases.

* Section 8.4 returns to the topic of transforming the response and predictors
(discussed previously in Section 3.4) to correct problems such as nonnormally
distributed errors and nonlinearity.

¢ Section 8.5 deals with nonconstant error variance.

* Sections 8.6 and 8.7 respectively describe the extension of diagnostic meth-
ods to generalized linear models, such as logistic and Poisson regression, and
to mixed-effects models.

* Diagnosing collinearity in regression models is the subject of Section 8.8.

* Although extensive, this chapter isn’t intended to be encyclopedic. We focus
on methods that are most frequently used in practice and that we believe to be
most generally useful. There are consequently several diagnostic functions in
the car package that aren’t covered in the chapter. Section 8.9 briefly outlines
these functions.

8.1 Residuals

Residuals of one sort or another are the basis of most diagnostic methods. Suppose
that we specify and fit a linear model assuming constant error variance 0. The
ordinary residuals are given by the differences between the responses and the fitted
values,

(,’l':)/l'—yi,l':l,...,}’l (81)

In ordinary-least-squares (OLS) regression, the residual sum of squares is equal to
> e2. If the regression model includes an intercept, then " ¢; = 0. The ordinary
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8.1. Residuals m 387

residuals are uncorrelated with the fitted values or indeed any linear combination
of the regressors, including the regressors themselves, and so patterns in plots of
ordinary residuals versus linear combinations of the regressors can occur only if one
or more assumptions of the model are inappropriate.

If the regression model is correct, then the ordinary residuals are random vari-
ables with mean zero and with variance given by

Var(e;) = (1 — h;) (8.2)

The quantity 4; is called a leverage or hat-value. In linear models with fixed predic-
tors, /; is a nonrandom value constrained to be between zero and 1, depending on
the location of the predictors for a particular case relative to the other cases.! Let
x; = (1,1, . . ., ;) represent the vector of regressors for the 7th of 7 cases.” Large
values of /; correspond to cases with relatively unusual x;-values, whereas small 4;
corresponds to cases close to the center of the predictor data (see Section 8.3.2).

Ordinary residuals for cases with large 4, have smaller variance. To cotrect for
the nonconstant variance of the residuals, we can divide them by an estimate of
their standard deviation. Letting ° = (3. ¢?)/(n — k — 1) ‘represent the esti-
mate of % in a model with an intercept and # other regressors, the standardized
residuals are

4 (8.3)
R s

While the eg; have constant variance, they are nolonger uncorrelated with the fitted
values or linear combinations of the predictors, so using standardized residuals in
plots is not an obvious improvement.

Studentized residuals are given by

L (8.4)
€T — < .
\’ U(_i)\/l—/J,-

~2 . . . . .

where 5 _ is the estimate of 0> computed from the regression without the ith case.
Like the standardized residuals, the Studentized residuals have constant variance.
In addition, if the original errors are normally distributed, then e7; follows a #

distribution with # — #— 2 degrees of freedom and can be used to test for outliers
(see Section 8.3)..One can show that in OLS linear regression,

o 32(71—/6—1—429)
(=) = n—rk—2

(8.5)

and so computing the Studentized residuals doesn't really require refitting the re-
gression without the ith case.

If the model is fit by weighted-least-squares (WLS) regression with known pos-
itive weights w;, then the ordinary residuals are replaced by the Pearson residuals,

epi = \Jwie; (8.6)

! In a model with an intercept, the minimum hat-value is 1/7.
2 We assume here the xo; = 1is the constant regressor for a model with an intercept; if there is no intercept,
then xg is simply omitted.
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The residual sum of squares is Y e%, in WLS estimation. If we construe OLS re-
gression to have implicit weights of w; = 1 for all 7, then Equation 8.1 is simply a
special case of Equation 8.6, and we will generally use the term Pearson residuals to
cover both of these cases. The standardized and Studentized residuals are unaffected
by weights because the weights cancel in the numerator and denominator of their
formulas.

The generic R function residuals () can compute various kinds of residuals.
The default for a linear model is to return the ordinary residuals even if weights are
present. Setting the argument type="pearson" (with a lowercase “p”) returns
the Pearson residuals, which produces correctly weighted residuals if weights are
present and the ordinary residuals if there are no weights. Pearson residuals are the
default when residuals () is used with a generalized linear model. The functions
rstandard () and rstudent () return the standardized and Studentized residu-
als, respectively. The function hatvalues () returns the hatsvalues.

8.2 Basic Diagnostic Plots

The car package includes a number of functions that produce plots of residuals and
related quantities. The variety of plots reflects the fact that no one diagnostic graph
is appropriate for all purposes.

8.2.1 Plotting Residuals

Plots of residuals versus fitted values and versus each of the regressors in turn are
the most basic diagnostic graphs. If a linear model is correctly specified, then the
Pearson residuals are independent of the fitted values and also of the regressors
or the predictors-on which they are based, and these graphs should be null plots,
with no systematic features, in the sense that the conditional distribution of the
residuals that are plotted on the vertical axis should not change with the fitted
values, aregressor, or a predictor on the horizontal axis. The presence of systematic
features generally implies a failure of one or more assumptions of the model. Of
interest in these plots are nonlinear patterns, changes in variation across the graph,
and isolated points.

Plotting residuals is useful for revealing problems but less useful for determining
the exact nature of the problem. Consequently, we will present other diagnostic
graphs to suggest improvements to a model.

Consider, for example, a modification of the model used in Section 4.2.2 for the
Canadian occupational-prestige data:

library("car")

PrestigeStype <- factor (PrestigeStype,
levels=c("bc", "wc'", "prof"))

prestige.mod.2 <- lm(prestige ~ education + income + type,
data=Prestige)

brief (prestige.mod. 2)
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(Intercept) education income typewc typeprof
Estimate -0.623 3.673 0.001013 -2.74 6.04
Std. Error 5.228 0.641 0.000221 2.51 3.87

Residual SD = 7.09 on 93 df, R-squared = 0.835

In Section 4.2.2, we replaced the predictor income by the regressor log(income).
Here we naively use income without transformation, in part to demonstrate what
happens when a predictor needs transformation. For convenience, we also reorder
the levels of the factor type.

The standard residual plots for this model are given by the residualPlots ()
function in the car package:

residualPlots (prestige.mod. 2)

Test stat Pr(>|Test stat])

education -0.68 0.4959
income -2.89 0.0049
type

Tukey test -2.61 0.0090

This command produces the four graphs in Figure 8.1 with the Pearson residuals
on the vertical axis. The horizontal axis in the top row is for the numeric regressors
education and income. The first graph in the second row shows boxplots of the
residuals for the various levels of the factor type. The final graph has the fitted
values on the horizontal axis. The broken linein each panel is the horizontal line
through ¢p = 0; as explained below, the solid line is a quadratic fit to the points in
the plot.

The most common diagnostic graph inlinear regression is the plot of residuals
versus the fitted values, shown at the bottom right of Figure 8.1. The plot has a
curved general pattern, suggesting that the model we fit is not adequate to describe
the data. The plot of residuals versus education at the top left, however, resembles
a null plot, in which no particular pattern is apparent. A null plot is consistent
with an adequate model, but as is the case here, one null plot is insufficient to
provide evidence of an-adequate model, and indeed one nonnull plot is enough
to suggest that the specified model does not match the data. The plot of residuals
versus income at the top right is also curved, as might have been anticipated in
light of our preliminary examination of the data in Section 3.3.2. The residual plot
for a factor like type, at the bottom left, is a set of boxplots of the residuals at the
various levels of the factor. In a null plot, the boxes should all have about the same
center and inter-quartile distance, as is more or less the case here.

To help examine these residual plots, a lack-of-fit test is computed for each nu-
meric regressor and a curve is added to the corresponding graph. The lack-of-fit test
for education, for example, is the #test for the regressor (education)?® added
to the model, for which the corresponding p-value rounds to .50, indicating no
lack of fit of this type. For income, the lack-of-fit test produces the p-value .005,
clearly confirming the nonlinear pattern visible in the graph. The lines shown on
the plot are the fitted quadratic regressions of the Pearson residuals on the numeric
regressors.
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Figure 8.1 Basic residual plots for the regression of prestige on education,
income, and type in the Prestige data set.

For the plot of residuals versus fitted values, the test, called Tukeys rest for non-
additivity (Tukey, 1949), is obtained by adding the squares of the fitted values to
the model and refitting. The p-value for Tukey’s test is obtained by comparing the
test statistic to the standard-normal distribution. The test confirms the visible im-
pression of curvature in the residual plot, further reinforcing the conclusion that
the fitted model is not adequate.

The residualPlots () function shares many arguments with other graphics
functions in the car package; see help ("residualPlots") for details. All ar-
guments beyond the first are optional. The id argument controls point identifica-
tion; for example, setting 1d=11ist (n=3) would automatically identify the three
cases with the largest absolute residuals (see Section 3.5). There are additional argu-
ments to control the layout of the plots and the type of residual plotted; setting
type="rstudent", for example, would plot Studentized residuals rather than
Pearson residuals. Setting smooth=TRUE, quadratic=FALSE would display a
loess smooth rather than a quadratic curve on each plot, although the test statistics
always correspond to fitting quadratics.

If you want only the plot of residuals against fitted values, you can use

residualPlots (prestige.mod.2, ~ 1, fitted=TRUE)
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whereas the plot against education only can be obtained with

residualPlots (prestige.mod.2, ~ education, fitted=FALSE)

The second argument to residualPlots (), and to other functions in the car
package that can produce graphs with several panels, is a one-sided formula that
specifies the regressors against which to plot residuals. The formula ~ . is the de-
fault, to plot against a// the regressors; ~ 1 plots against none of the regressors and
in the current context produces a plot against fitted values only; ~ . - income
plots against all regressors but income. Because the fitted values are not part of
the formula that defined the model, there is a separate £1tted argument, with de-
fault TRUE to include a plot of residuals against fitted values and set to FALSE to
exclude it.

8.2.2 Marginal-Model Plots

A variation on the basic residual plot is the marginal-model plot, proposed by
R.D. Cookand Weisberg (1997) and implemented in themarginalModelPlots ()
function:

marginalModelPlots (prestige.mod. 2)

The plots shown in Figure 8.2 all have the response variable, in this case pres-
tige, on the vertical axis, while the horizontal axis is given in turn by each of the
numeric regressors in the model and the fitted values. No plot is produced for the
factor predictor type. The plots of the response versus individual regressors dis-
play the conditional distribution of the response given each regressor, ignoring the
other regressors; these are marginal plots in the sense that they show the marginal
relationship between the response and each regressor. The plot versus fitted values
is a little different, in that it displays the conditional distribution of the response
given the fit of the model.

We can estimate a regression function for each of the marginal plots by fitting a
smoother to the points-in the plot. The marginalModelPlots () function uses
a loess smooth, as shown by the solid line on the plot.

Now imagine a second graph that replaces the vertical axis by the fitted values
from the model. If the model is appropriate for the data, then, under fairly mild
conditions, the smooth fit to this second plot should also estimate the conditional
expectation of the response given the regressor on the horizontal axis. The second
smooth is also drawn on the marginal-model plot, as a dashed line. If the model fits
the data well, then the two smooths should match on each of the marginal-model
plots; if any pair of smooths fails to match, then we have evidence that the model
does not fit the data well.

An interesting feature of the marginal-model plots in Figure 8.2 is that even
though the model that we fit to the Prestige data specifies linear partial rela-
tionships between prestige and each of education and income, it is able to
reproduce nonlinear marginal relationships for these two regressors. Indeed, the
model, as represented by the dashed lines, does a fairly good job of matching the
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Marginal-Model Plots
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Figure 8.2 Marginal-model plots for the regression of prestige on
education, income, and type in the Prestige data set.

marginal relationships represented by the solid lines, although the systematic fail-
ures discovered in the residual plots are discernable here as well.

Marginal-model plots can be used with any fitting or modeling method that
produces fitted values, and so they can be applied to some problems where the
definition of residuals is unclear. In particular, marginal-model plots work well with
generalized linear models.

The marginalModelPlots () function has an SD argument, which, if set to
TRUE, adds estimated standard-deviation lines to the graph. The plots can therefore
be used to check both the regression function, as illustrated here, and assumptions
about variance. Other arguments to the marginalModelPlots () function are
similar to those for residualPlots ().

8.2.3 Added-Variable Plots

The marginal-model plots of the last section display the marginal relationships
between the response and each regressor, ignoring other regressors in the model.
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In contrast, added-variable plots, also called partial-regression plots, display the par-
tial relationship between the response and a regressor, adjusted for all the other
regressors.

Suppose that we have a regression problem with response y and regressors xq, . . .,
x> To draw the added-variable plot for one of the regressors, say the first, x;, con-
duct the following two auxiliary regressions:

1. Regress y on all the regressors excluding x;. The residuals from this regression
are the part of y that is not “explained” by all the regressors except for xi.

2. Regress x1 on the other regressors and again obtain residuals. These residuals
represent the part of xi that is not explained by the other regressors; put another
way, the residuals are the part of x; that remains when we condition on the
other regressors.

The added-variable plot for x; is simply a scatterplot, with the residuals from Step 1
on the vertical axis and the residuals from Step 2 on the horizontal axis.

The avPlots () function in the car package works both for linear and gener-
alized linear models. It has arguments for controlling which plots are drawn, point
labeling, and plot layout, and these arguments are the same as for the residu-
alPlots () function described in Section 8.2.1.

Added-variable plots for the Canadian occupational-prestige regression (in
Figure 8.3) are produced by the following command:

avPlots (prestige.mod.2, id=list(n=2, cex=0.6))

The argument id=1ist (n=2, cex=0.6) identifies up to four points in each
graph: the two that are furthest from the mean on the horizontal axis and the two
with the largest absolute residuals from the fitted line. Because the case labels in the
Prestige data set are long, we used cex=0.6 to reduce the size of the printed
labels to 60% of their default size.

The added-variable plot has several interesting and useful properties:

* The least-squares line on the added-variable plot for the regressor x; has the
same slope 4; as x; in the full regression. Thus, for example, the slope in the
added-variable plot for education is ; = 3.67, and the slope in the added-
variable plot for income is 4, = 0.00101.4

¢ The residuals from the least-squares line in the added-variable plot are the same
as the residuals e; from the regression of the response on a// the regressors.

* Because positions on the horizontal axis of the added-variable plot show val-
ues of x; conditional on the other regressors, points far to the left or right

3 Although it is not usually of interest, when there is an intercept in the model, it is also possible to
construct an added-variable plot for the constant regressor, xo, which is equal to 1 for every case.

4 Income is in dollars per year, so the slope for income is in prestige points per dollar. Units are always
important in interpreting slope estimates: In the current example, an additional dollar of annual income
is a very small increment.
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Added-Variable Plots
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Figure 8.3 Added-variable plots for the regression of prestige on
education, income, and type in the Prestige data set.

represent cases for which the value of x; is unusual given the values of the
other regressors. The variation of the variable on the horizontal axis is the
conditional variation of x;, and the added-variable plot therefore allows us to
visualize the precision of estimation of 4;, along with the leverage of each case
on the regression coefficient (see Section 8.3.2 for a discussion of leverage in
regression).

* For factors, an added-variable plot is produced for each of the contrasts that
are used to define the factor, and thus if we change the way that contrasts
are coded for a factor, the corresponding added-variable plots will change as
well.

The added-variable plot allows us to visualize the effect of each regressor after ad-
justing for all the other regressors in the model, effectively reducing the (£ + 1)-
dimensional regression problem to a sequence of 2D graphs.

In Figure 8.3, the plot for income has a positive slope, but the slope appears to be
influenced by two high-income occupations (physicians and general managers) that
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pull down the regression line at the right. There don’t seem to be any particularly
noteworthy points in the added-variable plots for the other regressors.

Although added-variable plots are useful for studying the impact of cases on the
regression coeflicients (see Section 8.3.3), they can prove misleading for diagnosing
other sorts of problems, such as nonlinearity. A further disadvantage of the added-
variable plot is that the variables on both axes are sets of residuals, and so neither
the response nor the regressors is displayed directly.

Sall (1990) and R. D. Cook and Weisberg (1991) generalize added-variable plots
to terms with more than one degree of freedom, such as a factor or polynomial re-
gressors. Following Sall, we call these graphs leverage plots. For terms with 1 degree
of freedom, leverage plots are very similar to added-variable plots, except that the
slope in the plot is always equal to 1, not to the corresponding regression coeffi-
cient. Although leverage plots can be misleading in certain circumstances,’ they
can be useful for locating groups of cases that are jointy high leverage or influ-
ential. Leverage, influence, and related ideas are explored in Section 8.3. There is
a leveragePlots () function in the car package, which works only for linear
models.

8.2.4 Marginal-Conditional Plots

Marginal-conditional plots are a pedagogical tool to help understand the distinction
between the unconditional and conditional relationships of the response variable
to a specific regressor. The unconditional relationship is visualized in a scatterplot
of the response versus the regressor. The conditional relationship is visualized by an
added-variable plot. The mcPlot () and'mcPlots () functions in the car package
compare these two graphs either in the same scale or superimposed on the same
plot.

Figure 8.4 is the marginal-conditional plot for education in the model for the
Canadian occcupational-prestige data used in the last few sections, drawn as two
separate panels (by setting overlaid=FALSE):

mcPlots (prestige.mod.2, ~ education, overlaid=FALSE)

The scatterplot on the left displays the response prestige on the vertical axis
and the regressor education on the horizontal axis. The variables on both axes are
centered by subtracting their respective sample means. Centering changes the labels
on the tick marks to make the scatterplot comparable to the added-variable plot,
but it does not change the shape of the scatterplot. Marginally, prestige increases
linearly with education. The line shown on the graph has slope given by the OLS
regression of prestige on education alone. As is typical of functions in the
car package, mcPlot () draws a marginal-conditional plot for one regressor, and
mcPlots () draws one or more plots. See help ("mcPlot™) for descriptions of
available options.

5 For example, if a particular case causes one dummy-regressor coefficient to get larger and another smaller,
these changes can cancel each other out in the leverage plot for the corresponding factor, even though a
different pattern of results for the factor would be produced by removing the case.
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Figure 8.4 Marginal-conditional plots for education in the regression of
prestige on education, income, and type of occupation in the
Prestige data set. The panel on the left is the centered marginal
scatterplot for prestige versus education; the panel on the right is
the conditional added-variable plot for the two variables in the
model.

The graph on the right of Figure 8.4 displays the conditional added-variable plot
for education after adjusting for the other regressors in the model. The added-
variable plot has the same size and scaling as the marginal plot. Both plots display
one point for each case in the data. If both the response and the regressor were in-
dependent of the other regressors, then these two plots would be identical. If the
response were perfectly correlated with the other regressors, then the points in the
second plot would all have‘vertical coordinates of zero, and if the regressor were
petfectly correlated with the other regressors, then all the horizontal coordinates in
the second plot would equal zero. In this example, we see that conditioning edu-
cation on the other regressors accounts for most of the variation in education
(the R? for the regression of education on income and type is 0.83), as reflected
by much smaller variation in horizontal coordinates in the conditional plot than in
the marginal plot. Similarly, much of the variation in the response in the marginal
plotis accounted for by the other regressors, reflected in the relatively small varia-
tion in the response in the conditional plot. The regression line in the conditional
plot has slope equal to the education regression coeflicient from the full model,
prestige.mod.2 (page 388).

8.3 Unusual Data

Unusual data can wreak havoc with least-squares estimates and may prove interest-
ing in their own right. Unusual data in regression include outliers, high-leverage
points, and influential cases.
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8.3.1 Outliers and Studentized Residuals

Regression outliers are y-values that are unusual conditional on the values of the pre-
dictors. An illuminating route to search for outliers is via the mean-shift outlier
model,

y=PBo+ B+ -+ Beat+ydi+e

where d; is a dummy regressor coded 1 for case 7 and zero for all others. If v #
0, then the conditional expectation of the ith case has the same dependence on
X1, ... ,%; as the other cases, but its intercept is shifted from 5y to By + . The
t-statistic for testing the null hypothesis Hy: 7 = 0 against a two-sided alternative
has n — £ — 2 degrees of freedom if the errors are normally distributed and is
the appropriate test for a single mean-shift oudlier at case 7. Remarkably, this %
statistic turns out to be identical to the ith Studentized residual, e7; (Equation 8.4,
page 387), and so we can get the test statistics for the 7 different null-hypotheses,
Ho;: case 7 is not a mean-shift outlier, 7 = 1, . . . , #, at minimal computational cost.

Our attention is generally drawn to the largest absolute Studentized residual,
and this presents a problem: Even if the Studentized residuals were independent,
which they are not, there would be an issue of simultaneous inference entailed by
picking the largest of 7 test statistics. The dependence of the Studentized residuals
complicates the issue. We can deal with this problem (1) by a Bonferroni adjustment
of the p-value for the largest absolute Studentized residual, multiplying the usual
two-tail p by the sample size 7, or (2) by constructing a quantile-comparison plot
of the Studentized residuals with a confidence envelope that takes their dependence
into account.

To illustrate, we reconsider Duncan’s occupational-prestige data (introduced
in Section 1.5), regressing prestige on occupational income and education
levels:

mod.duncan <- lm(prestige ~ income + education, data=Duncan)

The generic ggPlot () function in the car package has a method for linear models,
plotting Studentized residuals against the corresponding quantiles of #(n — £ —
2). By default, ggPlot () generates a 95% pointwise confidence envelope for the
Studentized residuals, using a parametric version of the bootstrap, as suggested by
Atkinson (1985):°

ggPlot (mod.duncan, id=list(n=3))

minister reporter contractor
6 9 17

The resulting plot is shown in Figure 8.5. Setting the argument id=1ist (n=3) to
the ggPlot () function returns the names and indices of the three cases with the
largest absolute Studentized residuals and identifies these points in the graph (see
Section 3.5 on point identification); of these points, only minister strays slightly
outside of the confidence envelope. If you repeat this command, your plot may

© Bootstrap methods in R are described in Section 5.1.3 and in an online appendix to the book.
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Figure 8.5 Quantile-comparison plot of Studentized residuals from Duncan’s
occupational-prestige regression, showing the pointwise 95%
simulated confidence envelope.

look a little different from ours because the envelope is computed by simulation.
The distribution of the Studentized residuals looks heavy-tailed compared to the
reference #distribution, and perhaps a method of robust regression would be more
appropriate for these data.”

TheoutlierTest () function in the car package locates the largest Studentized
residual in absolute value and computes the Bonferroni-corrected #-test:

outlierTest (mod.duncan)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent]:

rstudent unadjusted p-value Bonferonni p
minister 3.1345 0.0031772 0.14297

‘The Bonferroni-adjusted p-value is fairly large, .14, and so we conclude that it isn’t
very surprising that the biggest Studentized residual in a sample of size n = 45
would be as great as 3.135. The somewhat different conclusions suggested by the
QQ-plot and the Bonferroni outlier test have a simple explanation: The confidence
envelope in the QQ-plot is based on pointwise 95% confidence intervals while the
outlier test adjusts for simultaneous inference.

8.3.2 Leverage: Hat-Values

Cases that are relatively far from the center of the predictor space, taking account
of the correlational pattern among the predictors, have potentially greater influence

7 R functions for robust and resistant regression are described in an online appendix to the R Companion.
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on the least-squares regression coeflicients; such points are said to have high leverage.
The most common measures of leverage are the 4, or hat-values.® The b; are bounded
between zero and 1 (in models with an intercept, they are bounded between 1/7
and 1); their sum, ) /;, is always equal to the number of coefficients in the model,
including the intercept, and so in a model with an intercept, the average hat-value is
h = (k+1)/n. Problems in which there are a few very large 4; can be troublesome
because large-sample normality of some linear combinations of the predictors is
likely to fail, and high-leverage cases may exert undue influence on the results (see
below).

The hatvalues () function works for both linear and generalized linear mod-
els. One way of examining the hat-values and other individual-case diagnostic statis-
tics is to construct index plots, graphing the statistics against the corresponding case
indices.

For example, the following command uses the car function influenceInd-
exPlot () to produce Figure 8.6, which includes index plots of Studentized resid-
uals, the corresponding Bonferroni p-values for outlier testing, the hat-values, and
Cook’s distances (discussed in the next section) for Duncan’s occupational-prestige
regression:

influenceIndexPlot (mod.duncan, id=list (n=3))

The occupations railroad engineer (RR.engineer), conductor, and minister
stand out from the rest in the plot of hat-values; indicating that their predictor
values are unusual relative to the other occupations. In the plot of p-values for the
outlier tests, cases for which the Bonferroni bound is bigger than 1 are set equal to
1, and here only one case (minister) has a Bonferroni p-value much less than 1.

8.3.3 Influence Measures

A case that is both outlying and has high leverage exerts influence on the regression
coeflicients, in the sense that if the case is removed, the coeflicients change con-
siderably. As usual, let b be the estimated value of the coefficient vector 8 and as
new notation define bi—;) to be the estimate of B computed without the ith case.’
Then the difference b(_; — b directly measures the influence of the 7th case on the
estimate of 3. If this difference is small, then the influence of case i is small, while
if the difference is large, then its influence is large.

8 * The name “hat-values” comes from the relationship between the observed vector of responses (i.e.,
the ys) and the fitted values (i.e., the s or “j-hats”). The vector of fitted values is given by y = Xb =
X(X'X)"'X'y = Hy where H = {hj} = XX 'X)7'X, called the hat-matrix, projects y into the
subspace spanned by the columns of the model matrix X. Because H = H'H, the hat-values /; are simply
the diagonal entries of the hat-matrix.

9 If vector notation is unfamiliar, simply think of b as the collection of estimated regression coefficients,

bo, by - ..y by
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Diagnostic Plots
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Figure 8.6 Index plots of diagnostic statistics for Duncan’s occupational-prestige
regression, indentifying the three most extreme cases in each plot.

Cook's Distance

It is convenient to summarize the size of the difference b(_;) — b by a single num-
ber, and this can be done in several ways. The most common summary measure
of influence is Cooks distance (R. D. Cook, 1977), D;, which is just a weighted

sum of squares of the differences between the individual elements of the coefficient
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vectors.'? Interestingly, Cook’s distance can be computed from diagnostic statistics
that we have already encountered,

‘%z‘ hi

T htl 1o h

i

where ¢, is the squared standardized residual (Equation 8.3 on page 387) and 4;
is the hat-value for case 7. The first factor may be thought of as a measure of out-
lyingness and the second as a measure of leverage. Cases for which D; is largest
are potentially influential cases. If any noteworthy D; are apparent, then a prudent
approach is to remove the corresponding cases temporarily from the data, refit the
regression, and see how the results change. Because an influential case can affect.the
fit of the model at other cases, it is best to remove cases one at a time, refitting the
model at each step and reexamining the resulting Cook’s distances.

The generic function cooks.distance () has methods for linear and general-
ized linear models. Cook’s distances are also plotted, along with Studentized resid-
uals and hat-values, by the influenceIndexPlot () function, as illustrated for
Duncan’s regression in Figure 8.6. The occupation minister is the most influ-
ential according to Cook’s distance, and we therefore see what happens when we
delete this case and refit the model:

mod.duncan.2 <- update (mod.duncan,
subset= rownames (Duncan) != "minister")
compareCoefs (mod.duncan, mod.duncan.Z2)

Calls:

1: Im(formula = prestige ~ income + education, data =
Duncan)

2: lIm(formula = prestige ~ income + education, data =
Duncan, subset = rownames (Duncan) != "minister")

Model 1 Model 2

(Intercept) -6.06 -6.63

SE 4.27 3.89

income 0.599 0.732

SE 0.120 0.117

education 0.5458 0.4330

SE 0.0983 0.0963

Removing minister increases the coefficient for income by about 20% and de-
creases the coefficient for education by about the same amount. Standard errors
are much less affected. In other problems, removing a case can change “statistically
significant” results to “nonsignificant” ones and vice-versa.

10" * In matrix notation,
!
(b-y —b) XX (b —b)
(k+1)a2

D; =
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Figure 8.7 Plot of hat-values, Studentized residuals, and Cook’s distances for
Duncan’s occupational-prestige regression. The size of the circles is
proportional to Cook’s D;.

The influencePlot () function in the car package provides an alternative to
index plots of diagnostic statistics:

influencePlot (mod.duncan, id=list (n=3))

StudRes Hat CookD
minister 3.13452 0.173058 0.566380
reporter -2.39702 0.054394 0.098985
conductor -1.70403 0.194542 0.223641
contractor 2.04380 0.043255 0.058523
RR.engineer 0.80892 0.269090 0.080968

This command producesa bubble plot, shown in Figure 8.7, combining the display
of Studentized residuals, hat-values, and Cook’s distances, with the areas of the
circles proportional to Cook’s D;. As usual, the 1d argument is used to label points.
In this case, the n=3 points with the largest hat-values, CookK’s distance, or absolute
Studentized residuals will be flagged, so more than three points in all are labeled.

We invite the reader to continue the analysis by examining influence diagnostics
for Duncan’s regression after the case minister has been removed.

Influence Separately for Each Coefficient

Rather than summarizing influence by looking at all coefficients simultaneously, we
could create # + 1 measures of influence by looking at individual differences

dfbeta; = b(_;; — bjforj=10,...,k

where 4; is the coeflicient computed using all of the data, and b(_i)j is the same
coeflicient computed with case 7 omitted. As with D;, computation of the dfbeta;
can be accomplished efficiently without having to refit the model. The dfbeta;; are
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expressed in the metric (units of measurement) of the coefficient 4;. A standard-
ized version, dfbetas;;, divides dfbeta;; by an estimate of the standard error of 4;
computed with case 7 removed.

The dfbeta () function in R takes a linear-model or generalized-linear-model
object as its argument and returns all of the dfbeta;; similarly, dfbetas () com-
putes the dfbetas;;. For example, for Duncan’s regression:

dfbs.duncan <- dfbetas (mod.duncan)
head (dfbs.duncan) # first few rows

(Intercept) income education
accountant -2.2534e-02 6.6621e-04 0.03594387
pilot -2.5435e-02 5.0877e-02 -0.00811827
architect -9.1867e-03 6.4837e-03 0.00561927
author -4.7204e-05 -6.0177e-05 0.00013975
chemist -6.5817e-02 1.7005e-02 0.08677706
minister 1.4494e-01 -1.2209e+00 1.26301904

We could examine each column of the dfbetas matrix separately (e.g., via an index
plot), but because we are not really interested here in influence on the regression
intercept, and because there are just two slope coeflicients, we instead plot influ-
ence on the income coeflicient against influence on the education coefficient

(Figure 8.8):

plot(dfbs.duncan[ , c("income", "education")]) # for bl and b2
showLabels (dfbs.duncan[ , "income"],

dfbs.duncan[ , "education"],

labels=rownames (Duncan), method="identify")

# remember to exit from point identification mode

The negative relationship between the dfbetas;; values for the two predictors reflects
the positive correlation of the predictors themselves. Two pairs of values stand out:
Consistent with our earlier remarks, the casesminister and conductor make the
income coeflicient smaller and the education coeflicient larger. We also identify
the occupation RR. engineer in the plot.

Added-Variable Plots as Influence Diagnostics

The added-variable plots introduced in Section 8.2.3 are a useful diagnostic for
finding potentially jointly influential points, which correspond to sets of points
that are out of line with the rest of the data and are at the extreme left or right
of the horizontal axis. When two or more such points act in concert to affect the
fitted regression surface, they may not be revealed by individual-case statistics such
as Cook’s D;. Figure 8.9, for example, shows the added-variable plots for income
and education in Duncan’s regression:

avPlots (mod.duncan, id=list(n=3, method="mahal"))

The argument id=1ist (n=3, method="mahal") serves to identify the three
points in each panel with the largest Mahalanobis distances from the center of
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Figure 8.9 Added-variable plots for Duncan’s occupational-prestige regression.

all the points.!! The cases minister, conductor, and RR.engineer (railroad
engineer) have high leverage on both coefficients. The cases minister and
conductor also work together to decrease the income slope and increase the
education slope; RR.engineer, on the other hand, is more in line with the
rest of the data. Removing borh minister and conductor changes the regression

Y The Mahalanobis or generalized distance takes into account the standard deviation of each variable and
their correlation. Although the graphics functions in the car package have reasonable general defaults for
point identification, we can also identify points interactively in diagnostic plots. Interactive point identi-
fication is supported by the argument id=11ist (method="identify") to avPlots () and other car
graphics functions. See help ("showLabels") and the discussion of point identification in Section 3.5.
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coeflicients much more so than deleting minister alone:

mod.duncan.3 <- update (mod.duncan,
subset = - whichNames (c("minister", '"conductor"), Duncan))
compareCoefs (mod.duncan, mod.duncan.2, mod.duncan.3, se=FALSE)

Calls:

1: Im(formula = prestige ~ income + education, data =
Duncan)

2: Im(formula = prestige ~ income + education, data =
Duncan, subset = rownames (Duncan) != "minister")

3: Im(formula = prestige ~ income + education, data =
Duncan, subset = -whichNames (c("minister", "conductor"),
Duncan) )

Model 1 Model 2 Model 3

(Intercept) -6.06 -6.63 -6.41

income 0.599 0.732 0.867

education 0.546 0.433 0.332

We use the whichNames () function in the car package to return the indices of
the cases "minister" and "conductor" in the Duncan data frame; setting the
subset argument to the negative of these indices excludes the two cases from the
regression.

8.4 Transformations After Fitting a
Regression Model

Suspected outliers, and possibly cases with high leverage, should be studied individ-
ually to decide if they should be included in an analysis or not. Influential cases can
cause changes in conclusions in an analysis and also require special treacment. Other
systematic features in residual plots, such as curvature or apparent nonconstant vari-
ance, require action on the part of the analyst to modify the szructure of the model
to match the data more closely. Apparently distinct problems can also interact: For
example, if the errors have a skewed distribution, then apparent outliers may be pro-
duced in the direction of the skew. Transforming the response to make the errors less
skewed can solve this problem. Similarly, properly modeling a nonlinear relationship
may bring apparently outlying cases in line with the rest of the data.
Transformations were introduced in Section 3.4 in the context of examining data
and with the understanding that regression modeling is often easier and more ef-
fective when the predictors behave as if they were normal random variables. Trans-
formations can also be used affer fitting a model, to improve a model that does not
adequately represent the data. The methodology in these two contexts is very similar.
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8.4.1 Transforming the Response
Box-Cox Transformations

The goals of fitting a model that exhibits linearity, constant variance, and normality
can in principle require three different response transformations, but experience
suggests that one transformation is often effective for all of these tasks. The most
common method for selecting a transformation of the response in regression is due
to Box and Cox (1964). If the response y is a strictly positive variable, then the
Box-Cox power transformations, introduced in Section 3.4.2 and implemented in
the bcPower () function in the car package, are often effective. We replace the
response y by Tpc(y, A), where

A

y 1
TBC(}’, )\) :y(k) _ 7)\ when \ 7é 0 (87)
logy  when A =0

The power parameter A determines the transformation. The Box-Cox family essen-
tially replaces y by y*, with 5° interpreted as log(y).'?

Box and Cox proposed selecting the value of A by analogy to the method of
maximum likelihood, so that the residuals from the linear regression of Tpc(y, A)
on the predictors are as close to normally distributed as possible.'? The car package
provides three functions for estimating A:

* TheboxCox () function, aslight generalization of the boxcox () function in
the MASS package (Venables & Ripley, 2002),'% was illustrated in a related
context in Section 3.4.2.

¢ We illustrated the powerTransform() function in Section 7.2.5 and will
do so again in the current section.

* The inverseResponsePlot () function provides a visual method for se-
lecting a normalizing response transformation, but we will not present it here
(see Section 8.9 for a brief description).

By way of illustration, we introduce an example that is of historical interest,
because it was first used by Box and Cox (1964). The data, in the Wool data set
in the carData package, are from an industrial experiment to study the strength of
wool yarn under various conditions. Three predictors were varied in the experiment:

12 The subtraction of 1 and division by A is inessential in that it doesn’t alter the shape of the power trans-
formation y’\, with the caveat that dividing by A does preserve the order of the data when X is negative:
For negative \, such as A = —1 (the inverse transformation), the simple power y* reverses the order of the
y-values.

134 1f Tpc (3, o) [x is normally distributed, then 75 (y, A1) |x cannot be normally distributed for A #
Ao, and so the distribution changes for every value of X. The method Box and Cox proposed ignores this fact
to get a maximum-likelihood-like estimate that turns out to have properties similar to those of maximum-
likelihood estimates. In the interest of brevity, in the sequel, we refer to Box-Cox and similar estimates of
transformation parameters as “maximum-likelihood estimates.”

4 poxCox () adds a family argument, providing greater flexibility in the choice of a response transfor-
mation.
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len, the length of each sample of yarn in millimeters; amp, the amplitude of the
loading cycle in angular minutes; and 1oad, the amount of weight used in grams.
The response, cycles, was the number of cycles until the sample failed. Data were
collected using a 3 x 3 x 3 design, with each of the predictors at three equally
spaced levels. We fit a linear model treating each of the three predictors as numeric
variables with linear effects:

brief (wool.mod <- lm(cycles ~ len + amp + load, data=Wool))

(Intercept) len amp load
Estimate 4521 13.2 -536 -62.2
Std. Error 1622 2.3 115 23.0

Residual SD = 488 on 23 df, R-squared = 0.729

This model fits the data poorly, as a residual plot versus fitted values (not shown)
reveals obvious curvature. We can attempt to remedy the situation by transforming
the response:

summary (pl <- powerTransform(wool.mod))

bcPower Transformation to Normality
Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 -0.0592 0 -0.1789 0.0606

Likelihood ratio test that transformation parameter is equal to 0
(log transformation)
LRT df pval
LR test, lambda = (0) 0.92134 1 0.337

Likelihood ratio test that no transformation is needed
LRT df pval
LR test, lambda = (1) 84.076 1 <2e-16

The maximum-likelihood estimate of the transformation parameter is X = —0.059,
with the 95% confidence interval for A running from —0.179 to 0.061. The p-value
for a test of A =0 is large, and the p-value for A = 1 is very small. Both the
likelihood-ratio tests and the Wald confidence interval suggest A = 0, or a log
transformation, as a reasonable choice, while leaving the response untransformed,
A =1, is.not acceptable. Replacing cycles by log(cycles) results in null residual
plots, as the reader can verify.

Zero or Negative Responses

The Box-Cox power family requires that the response variable be strictly positive,
but in some instances, zero or negative values may occur in the data. A common
approach to this problem is to add a “start” to the response to make all values of the
response positive and then to apply the Box-Cox power family of transformations.
Adding a start is problematic, however, because the transformation selected, and
the effectiveness of the transformation, can be greatly affected by the value of the
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start. If the start is too small, then the transformed zero and negative cases are likely
to become overly influential in the fit. If the start is too large, then information
about variation in the response is potentially attenuated.

As a partial remedy, we recommend the use of the Box-Cox with negatives family
of transformations, implemented in the benPower () function in the car package,
in place of the standard Box-Cox power family. The Box-Cox with negatives family
was introduced by Hawkins and Weisberg (2017) and is defined in Section 3.4.2.
Like the Box-Cox family, there is a power parameter A. In addition, there is a lo-
cation parameter v > 0 that takes the place of a start. As v approaches zero, the
Box-Cox with negatives transformation approaches the standard Box-Cox power
family.

In Section 6.5, we fit a Poisson regression to Ornstein’s data on interlocking di-
rectorates among Canadian corporations, regressing the number of interlocks main-
tained by each firm on the log of the firm’s assets, nation of control, and sector of
operation. Because number of interlocks is a count, the Poisson model is a nat-
ural starting point, but the original source (Ornstein, 1976) used a least-squares
regression similar to the following:

mod.ornstein <- lm(interlocks ~ log(assets) + nation + sector,
data=Ornstein)

About 10% of the values of interlocks are zero, so we use the "bcnPower"
family to select a normalizing transformation:

summary (p2 <- powerTransform(mod.ornstein, family="bcnPower"))

bcnPower transformation to Normality

Estimated power, lambda
Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1l 0.3545 0.33 0.2928 0.4162

Location gamma was fixed at its lower bound
Est gamma Std Err. Wald Lower Bound Wald Upper Bound
Y1 0.1 NA NA NA

Likelihood ratio tests about transformation parameters
LRT df pval

LR test, lambda = (0) 138.93 1 0

LR test, lambda = (1) 306.76 1 0

As is often the case when there are many zeros or negative values, the estimate
of 7 is close to zero, and so it is set to a value somewhat larger than zero (0.1)
and treated as fixed. The estimate of A is then found by the maximum-likelihood
method proposed by Box and Cox. The rounded estimate of the power is 2= 0.33,
or cube root, with a fairly narrow Wald confidence interval. No confidence interval
is given for 7y because its estimate is too close to zero. The likelihood-ratio tests
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provide evidence against A = 0 or A\ = 1.15 The suggestion is therefore to fit the
model

Ornstein$interlocks. tran <-
bcnPower (OrnsteinSinterlocks, lambda=1/3, gamma=0.1)
mod.ornstein.2 <- update (mod.ornstein, interlocks.tran ~ .)

and then proceed with the analysis. In this instance, the cube-root transformation
is defined for zero values, and because  is small, we could simply have used the
cube-root transformation of interlocks to get virtually the same results.

Additional  options for power transformations are given by
help ("powerTransform"), help ("bcPower"), and help ("boxCox"). The
powerTransform () function works for linear models, for multivariate linear mod-
els, and for linear mixed models. It is not useful, however, for non-Gaussian gener-
alized linear models, where transformation of the expected response is accomplished
by selection of a link function.

Understanding Models With a Transformed Response

A common complaint about using a transformed response is that the resulting
model is uninterpretable because the results are expressed in strange, transformed
units. In Ornstein’s interlocking-directorate regression, for example, a model with
the response given by the cube root of the numberof interlocks doesnt produce
directly interpretable coeflicients. We think that this complaint is misguided:

1. Most regression models are at best-approximations, and allowing for a trans-
formed response can help make for a better approximate model. As long as
the transformation is monotone, tests of effects have a straightforward inter-
pretation. For example, in the Ornstein regression, we find that the trans-
formed number of interlocks increases with log(assets), even though the
coefficient estimate is in uninterpretable units.

2. Some common transformations have straightforward interpretations. A few
examples: Increasing the log base-2 by 1 implies doubling the response. If the
response is the time in seconds required by a runner to traverse 100 meters,
then the inverse of the response is the average velocity of the runner in units
of 100 meters per second. If the response is the area of an apartment in square
meters, than its square root is a linear measure of size in meters.

3. In any event, invariant regression summaries such as effect plots can be “un-
transformed” using an inverse transformation, as we have illustrated by ex-
ample in Figure 7.10 (page 369). For the bcnPower () transformation fam-
ily, where the inverse is complicated, we supply the function becnPowerIn-
verse () to reverse the transformation; if, alternatively, z = )/)‘ is a simple
power transformation of the response y (taken as z = log(y) when A = 0),
then the inverse transformation is just z'/* for A # 0 and exp(z) for A = 0.

15 The likelihood-ratio-type tests concern A only and treat «y as a nuisance parameter by averaging over 1.
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8.4.2 Predictor Transformations

As outlined in Section 3.4, predictor transformations can, and typically should, be
performed before fitting models to the data. Even well-behaved predictors, however,
aren't necessarily linearly related to the response, and graphical diagnostic methods
are available that can help select a transformation affer ficting a model. Moreover,
some kinds of nonlinearity can’t be fixed by transforming a predictor, and other
strategies, such as polynomial regression or regression splines, may be entertained.

Component-Plus-Residual and CERES Plots

Component-plus-residual plots, also called partial-residual plots, are a simple graph-
ical device that can be effective for detecting the need to transform a predictor,
say xj, to a new variable 7(x;), for some transformation 7. The plot has x;; on the
horizontal axis and the partial residuals, eparia; = € + bjxij, on the vertical axis.
R. D. Cook (1993) shows that if the regressions of x; on the other xs are approx-
imately linear, then the regression function in the component=plus-residual plot
provides a visualization of 7. Alternatively, if the regressions of x; on the other xs
resemble polynomials, then a modification of the component-plus-residual plot due
to Mallows (1986) can be used.

The crPlots () function in the car package constructs component-plus-residual
plots for linear and generalized linear models. By way of example, we return to
the Canadian occupational-prestige regression (from Section 8.2.1), this time fit-
ting a regression model for prestige in which the predictors are income, ed-
ucation, and women. A scatterplot matrix of the response and the three predic-
tors (Figure 3.14 on page 147) suggests that the predictors are not all linearly re-
lated to each other, but no more complicated than quadratic regressions should
provide reasonable approximations. Consequently, we draw the component-plus-
residual plots specifying order=2, permitting quadratic relationships among the
predictors:

prestige.mod.3 <- lm(prestige ~ income + education + women,
data=Prestige)
crPlots (prestige.mod.3, order=2)

The component-plus-residual plots for the three predictors appear in Figure 8.10.
The broken line on each panel is the partial fit, bjxj, assuming linearity in the par-
tial relationship between y and x;. The solid line is a loess smooth, and it should
suggest a transformation if one is appropriate, for example, via the bulging rule (see
Section 3.4.3). Alternatively, the smooth might suggest a quadratic or cubic partial
regression or, in more complex cases, the use of a regression spline.

For the Canadian occupational-prestige regression, the component-plus-residual
plot for income is the most clearly curved, and transforming this variable first
and refitting the model is therefore appropriate. In contrast, the component-plus-
residual plot for education is only slightly nonlinear, and the partial relationship
is not simple (in the sense of Section 3.4.3). Finally, the component-plus-residual
plot for women looks mildly quadratic (although the lack-of-fit test computed by

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



8.4. Transformations After Fitting a Regression Model W 411

Component + Residual Plots

10 20
10 20 30

0
0

-20
-20

Component+Residual(prestige)
Component+Residual(prestige)

T T T T T T
0 5000 15000 25000

income education

Component+Residual(prestige)

0 20 40 60 80 100

women

Figure 8.10 Component-plus-residual plots of order=2 for the Canadian
occupational-prestige regression.

the residualPlots () function does not suggest a “significant” quadratic effect),
with prestige first declining and then rising as women increases.

Trial-and-error experimentation moving income down the ladder of powers and
roots suggests thata log transformation of this predictor produces a reasonable fit
to the data:

prestige.mod.4 <- update (prestige.mod.3,
~ . + log2(income) - income)

This is the model that we fit in Section 4.2.2. The component-plus-residual plot for
women in the revised model (not shown) is broadly similar to the plot for women in
Figure 8.10, and the lack-of-fit test computed by residualPlots () hasa p-value
of 0.025, suggesting a quadratic regression:

prestige.mod.5 <- update (prestige.mod. 4,
~ . - women + poly(women, 2))
brief (prestige.mod.5, pvalues=TRUE)
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(Intercept) education log2 (income) poly(women, 2)1

Estimate -1.11e+02 3.77e+00 9.36e+00 15.088

Std. Error 1.40e+01 3.47e-01 1.30e+00 9.336

Pr(>|t]) 4.16e-12 1.98e-18 1.26e-10 0.109
poly (women, 2)2

Estimate 15.871

Std. Error 6.970

Pr(>|t]) 0.025

Residual SD = 6.95 on 97 df, R-squared = 0.843

The p-value for the test of the quadratic term for women in the new model is also
.025.

If the regressions among the predictors are strongly nonlinear and not well de-
scribed by polynomials, then component-plus-residual plots:may not be effective
in recovering nonlinear partial relationships between the response and the pre-
dictors. For this situation, R. D. Cook (1993) provides another generalization of
component-plus-residual plots called CERES plots (for Combining conditional
Expectations and RESiduals). CERES plots use nonparametric-regression smoothers
rather than polynomial regressions to adjust for nonlinear relationships among the
predictors. The ceresPlots () function in the car package implements Cook’s
approach.

Experience suggests that nonlinear relationships among the predictors induce
problems for component-plus-residual plots only when these relationships are strong.
In such cases, a component-plus-residual plot can appear nonlinear even when the
true partial regression is linear—a phenomenon termed /leakage. For the Canadian
occupational-prestige regression, quadratic component-plus-residual plots (in Fig-
ure 8.10) and CERES plots are nearly identical to the standard component-plus-
residual plots, as the reader may verify.

Adding Partial Residuals to Effect Plots

Traditional component-plus-residual plots, as implemented in the crPlots () func-
tion, are drawn only for numeric predictors that enter a regression model additively.
Fox and Weisberg (2018, in press) show how partial residuals can be added to ef-
fect plots for linear and generalized linear models of arbitrary complexity, including
models with interactions between numeric predictors and factors and between nu-
meric predictors. These methods are implemented in the effects package.

To illustrate, let’s return to the regression model prestige.mod.2 for the
Canadian occupational-prestige data, in which prestige is regressed on income,
education, and type. An effect plot with partial residuals for income in this
model is a traditional component-plus-residual plot and is shown in Figure 8.11:1¢

16 A subtle, and unimportant, distinction is that the partial residuals in the effect plot add back in the
intercept from the regression model, together with constant terms involving the coefficients and means of
the other predictors, and so the scaling of the vertical axis of the plot is different from that of a traditional
component-plus-residual plot. The shape of the plot—that is, the configuration of points—is the same,
however.
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Figure 8.11 Effect plot with partial residuals for income in the regression of
prestige on income, education, and type for the Canadian
occupational-prestige data.

library ("effects")
plot (Effect("income"”, prestige.mod.2, residuals=TRUE),
partial.residuals=list (lty="dashed"))

The straight line represents the fitted effect, and the curved broken line is a loess
smooth of the partial residuals.!” The plot shows obvious unmodeled nonlinear-
ity in the partial relationship'of prestige to income (and is very similar to the
quadratic component-plus-residual plot for income in the model regressing pres-
tige on income, education, and women, shown at the top left of Figure 8.10).

The graph at the top of Figure 8.12 shows the effect plot with partial residuals

for the predictors income and type simultaneously:

plot(Effect(c("income", "type"), prestige.mod.2,
residuals=TRUE) ,
partial.residuals=list(span=0.9, lty="dashed"),
lattice=list (layout=c(3, 1)))

This effect plot is for the interaction of income with type in a model in which
these predictors enter additively, as reflected in the parallel straight lines in the graph
representing the ficted model, prestige.mod.2. We use a large span,

17 We specify a broken line (1t y="dashed") for the smooth because the default is to plot lines of different
colors for the model fit and the smooth, and color isn’t available to us in this book.
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partial.residuals=1list (span=0.9, lty="dashed"), for the loess
smoother because of the small numbers of cases in the various levels of type; we
also arrange the panels horizontally via the argument lattice=1ist (layout=
c(3, 1)) (see help("plot.eff") for details). The loess smooths are nearly
linear but with different slopes—greatest for blue-collar ("bc") occupations and
smallest for professional and managerial ("pro£") occupations—suggesting an un-
modeled interaction between the two predictors.

Refitting the model reveals that the income X type interaction has a very small
p-value, and the effect plot for income and type in this model, shown at the
bottom of Figure 8.12, supports the model:'®

prestige.mod. 6 <- update (prestige.mod.2,
~ income*type + education, data=Prestige)
Anova (prestige.mod. 6)

Anova Table (Type II tests)

Response: prestige
Sum Sg Df F value Pr (>F)

income 1059 1 25.41 2.3e-06
type 591 2 7.09 0.0014
education 1068 1 25.63 2.1e-06
income:type 890 2 10.68 6.8e-05
Residuals 3791 91

plot (Effect(c("income"”, "type"), prestige.mod.é6,
residuals=TRUE) ,
partial.residuals=list(span=0.9, lty="dashed"),
lattice=list(layout=c(3, 1)))

This example nicely illustrates how unmodeled interaction can be reflected in ap-
y
parent nonlinearity in-a component-plus-residual plot.

8.5 ~Nonconstant Error Variance

One of the assumptions of the standard linear model is that the error variance is
fully known apart from an unknown constant, 0. It is, however, possible that the
error variance depends on one or more of the predictors, on the magnitude of the
response, or systematically on some other variable.

To detect nonconstant variance as a function of a variable z, we can plot the
Pearson residuals versus z. Nonconstant variance would be diagnosed if the vari-
ability of the residuals in the graph either increased from left to right, decreased
from left to right, or displayed another systematic pattern, such as large variation
in the middle of the range of z and smaller variation at the edges.

18 Using the log of income in place of income in the respecified model straightens the slight curvature
barely discernable in the panels for blue-collar and white-collar occupations at the bottom of Figure 8.12.
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Figure 8.12  Effect plots with partial residuals for income and type in the
regression of prestige on income, education, and type:
additive model (top), model with interaction between income and
type (bottom).

In multiple regression, there are many potential plotting directions. Because
obtaining a two-dimensional graph entails projecting the predictors from many
dimensions onto one horizontal axis, however, we can never be sure if a 2D
plot showing nonconstant variability really reflects nonconstant error variance or
some other problem, such as unmodeled nonlinearity (R. D. Cook, 1998, Sec-
tion 1.2.1).

For an example, we return to the bank transactions data (introduced in Sec-
tion 5.1.1), relating minutes of labor time in branches of a large bank to the num-
ber of transactions of two types, t1 and t2; the data are in the Transact data set
in the carData package:

mod. transact <- Im(time ~ tl + t2, data=Transact)
brief (mod. transact)

(Intercept) tl t2
Estimate 144 5.462 2.0345
Std. Error 171 0.433 0.0943

Residual SD = 1143 on 258 df, R-squared = 0.909

residualPlots (mod. transact, tests=FALSE, layout=c(1, 3))

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



416 M 8. Regression Diagnostics for Linear, Generalized Linear, and Mixed-Effects Models

2000 4000 6000
2000 4000 6000
L
2000 4000 6000

Pearson residuals
0

Pearson residuals
0

Pearson residuals
0

-4000
L
-4000
L
-4000
L

T T T T T T T T T T T T
0 500 1000 1500 0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000

t 2 Fitted values

Figure 8.13 Residual plots for the transactions data.

Two of the residual plots shown in Figure 8.13 exhibit a characteristic fan shape,
with increasing variability moving from left to right for t2 and for the plot against
fitted values, but not as obviously for t 1. This pattern suggests nonconstant residual
variance, possibly as a function of t2 only.

8.5.1 Testing for Nonconstant Error Variance

Breusch and Pagan (1979) and R. D. Cook and Weisberg (1983) suggest a score
test for nonconstant error variance in a linear model. The assumption underlying
the test is that the variance is constant, or it depends on the conditional mean of
the response,

Var(e;) = o%g[E(y|x)]

or it depends on some linear combination of regressors z, . . . , 2,
Var(e;) = o”g(mza + - + 7p2p) (8.8)

In typical applications, the zs are selected from the xs and often include all of the xs,
but other choices of zs are possible. For example, in an educational study, variability
of test scores might differ among the schools in the study, and a set of dummy
regressors for schools would be candidates for the zs.

The ncvTest () function in the car package implements the score test. We
compute four score tests for the bank transactions regression:

(test.tl <- ncvTest (mod. transact, ~ tl1))

Non-constant Variance Score Test
Variance formula: ~ tl
Chisquare = 26.525, Df =1, p = 2.6e-07

(test.t2 <- ncvTest (mod. transact, ~ t2))

Non-constant Variance Score Test
Variance formula: ~ t2
Chisquare = 76.589, Df = 1, p = <2e-16

(test.tlt2 <- ncvTest (mod. transact, ~ tl + t2))
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Non-constant Variance Score Test
Variance formula: ~ tl + t2
Chisquare = 82.932, Df = 2, p = <2e-16

ncvTest (mod. transact)
Non-constant Variance Score Test

Variance formula: ~ fitted.values
Chisquare = 61.659, Df = 1, p = 4.08e-15

All four tests are for the null hypothesis that the s are equal to zero in Equation 8.8
against the alternatives that nonconstant variance is a function of t1 alone, a func-
tion of t2 alone, a function of both t1 and t2 in some linear combination, and,
finally, a function of the conditional mean of the response, as captured by the fit-
ted values. In this instance, all four tests have very small p-values, suggesting likely
nonconstant variance.

An approximate test of the null hypothesis that residual variance depends on
t2 alone versus the alternative that it depends on both t1 and t2 is obtained by
computing the difference between the chi-square test statistics in test.t1t2 and
test.t2 above:

(stat <- test.tlt2$ChiSquare - test.t2$ChiSquare)
[1] 6.3429

(df <- test.tlt2$8Df - test.t2$Df)
[1] 1

pchisqg(stat, df, lower.tail=FALSE)
[1] 0.011785

Even though this test suggests that the error variance should be modeled as a
function of both t1 and t2, residual variation is much more strongly related to
t2 than to t1, and so we might, as a reasonable approximation, refit the regres-
sion by weighted least squares, with weights given by 1/t 2. Alternatively, and more
naturally, the model could be fit as a generalized linear model with the identity
link and gamma errors, as suggested for this example by Cunningham and Heath-
cote (1989). Finally, because OLS estimates are unbiased even if the variance func-
tion is incorrectly specified, the estimates could be obtained by OLS, but with
standard errors and tests computed using either the bootstrap (Section 5.1.3) or
a sandwich coefficient-variance estimator (Section 5.1.2). These corrections may
be used by many functions in the car package, including 1inearHypothesis (),
deltaMethod (), Anova (), Confint (), S(),brief (), and Predict ().

8.6 Diagnostics for Generalized Linear
Models

Most of the diagnostics of the preceding sections extend straightforwardly to gener-
alized linear models. These extensions typically take advantage of the computation
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of maximum-likelihood estimates for generalized linear models by iterated weighted
least squares (IWLS: see Section 6.12), which in effect approximates the true log-
likelihood for a GLM by a weighted-least-squares problem. At convergence of the
IWLS algorithm, diagnostics are formed as if the weighted-least-squares problem
were the problem of interest, and so the exact diagnostics for the weighted-least-
squares fit are approximate diagnostics for the original GLM. Seminal work on the
extension of linear-least-squares diagnostics to generalized linear models was done
by Pregibon (1981), Landwehr, Pregibon, and Shoemaker (1980), Wang (1985,
1987), and Williams (1987). We focus here on methods that differ from their ap-

plication in linear models.

8.6.1 Residuals and Residual Plots

One of the major philosophical, though not necessarily practical, differences be-
tween linear-model diagnostics and GLM diagnostics is in the definition of residu-
als. In linear models, the ordinary residual is the difference y —9, which is meant to
mimic the statistical error ¢ = y — E(y|x). Apart from Gaussian generalized linear
models, there is no additive error in the definition of a GLM, and so the idea of a
residual has a much less firm footing.

Residuals for GLMs are generally defined in analogy to linear models. Here are
the various types of GLM residuals that are available in R:

* Response residuals are simply the differences between the observed response
and its estimated expected value: y; — [i;. These correspond to the ordinary
residuals in the linear model. Apart from the Gaussian case, the response
residuals are not used in diagnostics, however, because they ignore the non-
constant variance that is intrinsic to non-Gaussian GLMs.

* Working residuals are the residuals from the final IWLS fit. The working resid-
uals may be used to define partial residuals for component-plus-residual plots
and effect plots (see below) but are not usually accessed directly by the user.

* Pearson residuals are casewise components of the Pearson goodness-of-fit statis-
tic for the model,

Vi — ﬁz‘
ep = —F—mos
\/ Var(yi[x) /¢

where ¢ is the estimated dispersion parameter in the GLM. Formulas for
Var(y|x) are given in the last column of Table 6.2 (page 274). This definition
of ep; corresponds exactly to the Pearson residuals defined in Equation 8.6
(page 387) for WLS regression. These are a basic set of residuals for use with
a GLM because of their direct analogy to linear models. For a model named
m, the command residuals (m, type="pearson") returns the Pearson
residuals.
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o Standardized Pearson residuals correct for conditional response variation and
for the leverage of the cases:

o~

Vi — M
\//;(MX)O - hz’)

eps; —

To compute the epg;, we need to define the hat-values 4, for GLMs. The 4; are
taken from the final iteration of the IWLS procedure for fitting the model,
and have the usual interpretation, except that, unlike in a linear model, the
hat-values in a generalized linear model depend on y as well as on the con-
figuration of the xs.

* Deviance residuals, ep;, are the square roots of the casewise components.of
the residual deviance, attaching the sign of y; — [i;. In the linear model, the
deviance residuals reduce to the Pearson residuals. The deviance residuals are
often the preferred form of residual for generalized linear models and are
returned by the command residuals (m, type="deviance").

o Standardized deviance residuals are

. €Di
€DSi —

~

d(L=h;)

¢ The ith Studentized residual in a linear model is the scaled difference between
the response and the fitted value computed without case 7. Because of the spe-
cial structure of the linear model, these differences can be computed without
actually refitting the model removing case 7, but this is not true for gener-
alized linear models. While computing 7 regressions to get the Studentized
residuals is not impossible, it is not a desirable option when the sample size
is large. An approximation due to Williams (1987) is therefore used instead:

er; = sign(y; — ﬁi)\/(l — hi)epg; + /”{%’51'

The approximate Studentized residuals are computed when the function
rstudent () is applied to a GLM. A Bonferroni outlier test using the
standard-normal distribution may be based on the largest absolute Studen-
tized residual and is implemented in the outlierTest () function.

As an example, we return to the Canadian women’s labor force participation
data described in Section 6.7. We define a binary rather than a polytomous re-
sponse, with categories working or not working outside the home, and fit a logistic-
regression model to the data:

mod.working <- glm(partic != "not.work" ~ hincome + children,
family=binomial, data=Womenlf)
brief (mod.working)
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Figure 8.14 Residual plots for the binary logistic regression fit to the Canadian
women’s labor force participation data.

(Intercept) hincome childrenpresent

Estimate 1.336 -0.0423 -1.576
Std. Error 0.384 0.0198 0.292
exp (Estimate) 3.803 0.9586 0.207

Residual deviance = 320 on 260 df

The expression partic != "not.work" creates alogical vector, which serves as
the binary response variable in the model.

The residualPlots () function provides basic plots of residuals versus the
predictors and versus the linear predictor (Figure 8.14):

residualPlots (mod.working, layout=c(1, 3))

Test stat Pr(>|Test stat])
hincome 1.23 0.27
children

The function plots Pearson residuals versus each of the predictors in turn. Instead of
plotting residuals against fitted values, however, residualPlots () plots residuals
against the estimated linear predictor, 7j(x). Each panel in the graph by default
includes a smooth fit rather than a quadratic fit; a lack of fit test is provided only
for the numeric predictor hincome and not for the factor children or for the
estimated linear predictor.

In binary regression models, plots of Pearson residuals or of deviance residuals
are strongly patterned. In a plot against the linear predictor, the residuals can only
assume two values, depending on whether the response is equal to zero or 1. Because
the factor children only has two levels, the residuals when plotted against hin-
come can only take on four distinct values, correspondng to the combinations of
the binary response and the two levels of children. A correct model requires that
the conditional mean function in any residual plot be constant as we move across
the plot, and a fitted smooth helps us to learn about the conditional mean function
even in these highly discrete cases. Neither of the smooths, against hincome or the
linear predictor, shown in Figure 8.14, is especially curved. The lack-of-fit test for
hincome has a large p-value, confirming our view that this plot does not indicate

lack of fit.
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Figure 8.15 Index plots of diagnostic statistics for the logistic regression fit to
the Canadian women’s labor force participation data.

The residuals for children are shownas boxplots because children isa factor.
Recalling that the heavy line in each boxplot represents the median, most of the
residuals for children "absent" are positive but with a strong negative skew,
while most of the residuals for children "present" are negative with a positive
skew, implying that the model used may be inadequate. This residual plot suggests
that the interaction of children and hincome should be explored, an exercise we
leave to the interested reader.

8.6.2 Influence Measures

An approximation to Cook’s distance for GLM:s is

Gy b
(k1) T 1=y

These values are returned by the cooks.distance () function.
Figure 8.15 shows index plots of Cook’s distances and hat-values, produced by
the command:

influenceIndexPlot (mod.working, vars=c('"Cook'", "hat"),
id=list (n=3))
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Setting vars=c ("Cook", "hat") limits the graphs to these two diagnostics.
Cases 76 and 77 have the largest Cook’s distances, although even these are quite
small. We remove both Cases 76 and 77 as a check:

compareCoefs (mod.working,
update (mod.working, subset=-c(76, 77)))

Calls:

1: glm(formula = partic != "not.work" ~ hincome + children,
family = binomial, data = Womenlf)

2: glm(formula = partic != "not.work" ~ hincome + children,
family = binomial, data = Womenlf, subset = -c(76, 77))

Model 1 Model 2

(Intercept) 1.336 1.609
SE 0.384 0.405
hincome -0.0423 -0.0603
SE 0.0198 0.0212

childrenpresent -1.576 -1.648
SE 0.292 0.298

The reader can verify that removing just one of the two cases does not alter the
results much, but removing bozh cases changes the coeflicient of husband’s income
by more than 40%, about one standard error. Apparently, the two cases are an
influential pair that partially mask each other, and removing them both is required
to produce a meaningful change in the coeflicient for hincome. Cases 76 and 77
are women working outside the home even though both have children and high-
income husbands.

8.6.3 Graphical Methods: Added-Variable Plots,
Component-Plus-Residual Plots, and Effect Plots With
Partial Residuals

Added-variable plots are extended to generalized linear models by approximating
the two fitted regressions required to generate the plot. By default, the avPlots ()
function uses an approximation suggested by Wang (1985). Added-variable plots
for binary-regression models can be uninformative, however, because of the extreme
discreteness of the response variable.

Component-plus-residual and CERES plots also extend straightforwardly to
generalized linear models. Nonparametric smoothing of the resulting scatterplots
can be important to interpretation, especially in models for binary responses, where
the discreteness of the response makes the plots difficult to decode. Similar, if less
striking, effects due to discreteness can also occur for binomial and count data.

For an illustrative component-plus-residual plot, we reconsider Ornstein’s
interlocking-directorate quasi-Poisson regression from Section 6.5, but now we fit
a model that uses assets as a predictor rather than the log of assets:
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Figure 8.16 Component-plus-residual plot for assets in the quasi-Poisson
regression fit to Ornstein’s interlocking-directorate data.

mod.ornstein.gp <- glm(interlocks ~ assets + nation + sector,
family=quasipoisson, data=Ornstein)
crPlots (mod.ornstein.qgp, ~ assets, col='"gray")

The component-plus-residual plot for assets is shown in Figure 8.16. This plot is
hard to interpret because of the extreme positive skew in assets, but it appears as
if the assets slope is a good deal steeperat the left than at the right. The bulging
rule, therefore, points toward transforming assets down the ladder of powers,
and indeed the log rule in Section 3.4.1 suggests replacing assets by its logarithm
before fitting the regression (which, of course, is what we did originally):

mod.ornstein.gp.2 <- update (mod.ornstein.gp,
~ log2 (assets) + nation + sector)
crPlots (mod.ornstein.qgp.2, ~ log2(assets))

The linearity of the follow-up component-plus-residual plot in Figure 8.17 confirms
that the log-transform is a much better scale for assets.

We continue with a reexamination of the binary logistic-regression model fit to
Mroz’s women’s labor force participation data in Section 6.3. One of the predictors
in this model, the log of the woman’s expected wage rate (1wg), has an unusual
definition: For women in the labor force, for whom the response 1fp = "yes",
1wg is the log of the women’s actual wage rate, while for women not in the labor
force, for whom 1fp = "no", lwg is the log of the predicted wage rate from the
regression of wages on the other predictors.

To obtain a component-plus-residual plot for 1wg (Figure 8.18):

mod.mroz <- glm(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
family=binomial, data=Mroz)
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Figure 8.17 Component-plus-residual plot for the log of assets in the
respecified quasi-Poisson regression for Ornstein’s data.
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Figure 8.18 Component-plus-residual plot for 1wg in the binary logistic
regression for Mroz's women’s labor force participation data.

crPlots (mod.mroz, "lwg", pch=as.numeric (Mroz$lfp))
legend ("bottomleft",c("Estimated lwg", '"Observed 1lwg"),
pch=1:2, inset=0.01)

We specify the pch argument to crPlots () to use different plotting symbols for
the two values of 1fp and add a legend to the graph.'® The peculiar split in the plot

19 See Chapter 9 on customized graphics in R.
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reflects the binary response variable, with the lower cluster of points corresponding
to 1fp = "no" and the upper cluster to 1fp = "yes". It is apparent that 1wg
is much less variable when 1fp = "no", inducing an artifactually curvilinear rela-
tionship between 1wg and 1£p: We expect fitted values (such as the values of 1wg
when 1£fp = "no") to be more homogeneous than observed values, because fitted
values lack a residual component of variation.

We leave it to the reader to construct component-plus-residual or CERES plots
for the other predictors in the model.

For a final example, we return to a binary logistic regression fit to the Cowles
and Davis volunteering data from Section 6.3.2:

cowles.mod <- glm(volunteer ~ sex + neuroticism*extraversion,
data=Cowles, family=binomial)

We showed effect plots for Cowles and Davis's model in Figure 6.3(page 285).
To determine whether the linear-by-linear interaction between neuroticismand
extraversion is supported by the data, we can add partial residuals to the effect
plots of the interaction (Figure 8.19):

plot (predictorEffects (cowles.mod, ~ neuroticism + extraversion,
residuals=TRUE) ,
partial.residuals=list (span=3/4, lty="dashed"),
lattice=list (layout=c(1, 4)))

The predictor effect plot for neuroticsm is shown at the left, for extraversion
at the right. In each case, the other predictor in the interaction increases across its
range from the bottom panel to the top panel, as indicated by the black vertical
line in the strip at the top of each panel. By default, the conditioning predictor in
each plot is set to four values equally spaced across its range. We use the argument
partial.residuals=1list (span=3/4, lty="dashed") to plot() to in-
crease the span of the loess smoother (shown as a broken line in each panel) slightly
to 3 /4 from the default of 2/3 and the argument lattice=1ist (layout=c (1,
4)) to orient the panels in each effect plot vertically. The data appear to support
the linear-by-linear form of the interaction.

8.7 ~Diagnostics for Mixed-Effects Models

Regression diagnostics for mixed-effects models are relatively less developed than
for linear and generalized linear models. We focus in this section on component-
plus-residual plots, which are implemented for mixed-effects models in the effects
package, and on deletion diagnostics for influential data, which are implemented
in the car package.

8.7.1 Mixed-Model Component-Plus-Residual Plots

Computing partial residuals for the fixed effects in mixed models is a straightfor-
ward extension of the computations for linear and generalized linear models. The
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Figure 8.19 - Predictor effect plots with partial residuals for neuroticism (left)
and extraversion (right) in Cowles and Davis’s logistic
regression for volunteering, in which these two predictors are
modeled with a linear-by-linear interaction.

crPlots () function in the car package doesn't handle mixed-effects models, but
the predictorEffects () function and the more basic and general Effect ()
function in the effects package do, for models fit by the Imer () and glmer ()
functions in the Ime4 package and for models fit by 1me () in the nlme package.

To illustrate these capabilities, we return to a linear mixed-effects model that we
fic with 1me () in Section 7.2.6 to the Blackmore longitudinal data on exercise
and eating disorders:

library("nlme")

Blackmore$tran.exercise <- bcnPower (BlackmoreSexercise,
lambda=0.25, gamma=0.1)

blackmore.mod. 6.1me<- lme(tran.exercise ~ I(age - 8) *group,
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random = ~ 1 | subject,
correlation = corCARIl (form = ~ I(age - 8) | subject),
data=Blackmore)

S (blackmore.mod. 6. 1me)

Linear mixed model fit by REML, Data: Blackmore

Fixed Effects:
Formula: tran.exercise ~ I(age - 8) * group

Estimate Std.Error df t value Pr(>|t])

(Intercept) -0.1962 0.1427 712 -1.38 0.170
I(age - 8) 0.0668 0.0231 712 2.89 0.004
grouppatient -0.1569 0.1843 229 -0.85 0.396
I(age - 8):grouppatient 0.1894 0.0290 712 6.52 1.3e-10

Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 0.884 1.12

Correlation Structure: Continuous AR(1)
Formula: ~I(age - 8) | subject
Parameter estimate(s) :

Phi

0.664

Number of Observations: 945
Number of Groups: 231

logLik df AIC BIC
-1493.8 7 3001.6 3035.5

The fit is in the fourth-root transformed scale for the response, computed by
benPower (), with fixed effects for age (with origin set to age 8, the start of
the study), group ("patient" or "control"), and their interaction; a random
intercept by subject; and continuous first-order autoregressive errors.

We obtain a component-plus-residual plot for the age X group interaction just
as we would for a linear or generalized linear model, with the result appearing in
Figure 8.20:

plot (Effect(c("age", '"group"), blackmore.mod.é6.lme,
residuals=TRUE), partial.residual=list(lty="dashed"))

To display partial residuals, the plot must be in the default linear-predictor scale,
so we do not untransform the response as we did in Figure 7.10 (page 369). The
earlier values of age in the graph are discrete because observations were taken at
2-year intervals up to the point of hospitalization for patients or the date of the
interview for controls. Nonlinearity in the component-plus-residual plot is slight,
supporting the specification of the model.

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



428 M 8. Regression Diagnostics for Linear, Generalized Linear, and Mixed-Effects Models

age*group effect plot

8 10 12 14 16 18
1 11 1 1 1 1 1

1 1
group = control

[¢]

tran.exercise

5 -0 COOCHHNINTIIGINHTIRD 0000 O

age

Figure 8.20 Component-plus-residual plot for the age X group interaction in
the linear mixed-effects model fit to the Blackmore data.

8.7.2 Influence Diagnostics for Mixed Models

In mixed-effects models, it is natural to focus deletion diagnostics on clusters of
cases as well as potentially on individual cases. In linear models (as discussed in
Section 8.3), we can efficiently compute the effect of deleting individual cases on
statistics such as estimated regression coeflicients without having to refit the model.
Approximate influence diagnostics for generalized linear models (in Section 8.6.2)
start with the maximum-likelihood estimates of the parameters of a model for the
full data set and take one step toward the new maximum-likelihood estimates when
a case is deleted, rather than the computationally more expensive fully iterated so-
lution omitting each case.

A similar approximation has been suggested for mixed-effects models by several
authors (R. Christensen, Pearson, & Johnson, 1992; Demidenko & Stukel, 2005;
Shi & Chen, 2008; Pan, Fie, & Foster, 2014), but not, to our knowledge, for models
as general as those fit by the 1me (), 1mer (), and glmer () functions. In the car
package, we therefore take a more computationally demanding approach, actually
deleting subsets of cases corresponding to clusters and refitting the model.*

Deletion diagnostics are computed with a method provided by the car pack-
age for the standard-R influence () generic function; for example, for the linear
mixed-effects model fit to the Blackmore data:

20 The influence.ME package (Nieuwenhuis, te Grotenhuis, & Pelzer, 2012) takes a similar approach,
but our implementation is a bit more general and offers some computational efficiencies: We accomodate
models fit by 1me () as well as those fit by 1mer () and glmer (). We also start at the parameter estimates
for the full data set, and, for models fit by 1mer () or glmer (), we optionally allow the user to abbreviate
the computation. Finally, we plan to provide parallel computations to take advantage of computers with
multiple processors or cores (but have not yet implemented this feature).
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system. time (inf.blackmore <-
influence (blackmore.mod. 6.1lme, groups="subject"))

user system elapsed
39.42 0.00 39.46

The influence () function refits the model deleting each of the 231 subjects
(i.e., “clusters”) in turn, saving information in the returned object inf .blackmore,
of class "influence.lme". On our computer, the computation takes about a
minute.

The influenceIndexPlot () function in the car package has a method for
objects of class "influence.lme" and can create plots for both the fixed effects,
displaying influence on the coeflicients and Cook’s distances, and the random-effect
parameters, shown respectively in Figures 8.21 and 8.22:

influenceIndexPlot (inf.blackmore)
influenceIndexPlot (inf.blackmore, var="var.cov.comps'")

Comparing the extreme values plotted in the panels of Figure 8.21 to the mag-
nitudes of the corresponding estimated fixed-effect parameters suggests that none
of the subjects have substantial influence on the estimated fixed effects. In the
Blackmore data set, the cases for patients appear before those for controls. Be-
cause the dummy regressor for group is coded 1 for patients and zero for controls,
the (Intercept) parameter in the model is the intercept for controls, and the
I(age - 8) parameter is the slope for controls. As a consequence, patients have
no influence on these two fixed-effect coefficients, explaining the initial strings of
zero values in the first two panels of Figure 8.21.

The designation of the random-effect parameters in Figure 8.22 requires a bit
more explanation: The panel with vertical axis labeled restruct.subject
displays influence on the estimated standard deviation of the random intercepts,
the panel with axis labeled corStruct displays influence on the estimated autore-
gression parameter for the errors, and the panel with axis labeled 15igma shows
influence on the estimated /g of the residual standard deviation. Noting that the
latter is log(c) =log(1.123) = 0.116 for the full data, we can see that none of the
subjects have much influence on the random-effect parameter estimates.

For more information on the influence diagnostics provided by the car
package for mixed models, see help("influence.mixed.models") and
help("influenceIndexPlot").

8.8 Collinearity and Variance Inflation
Factors

When there are strong linear relationships among the predictors in a linear model,
the precision of the estimated regression coeflicients declines compared to what it
would have been were the predictors uncorrelated with each other. Other important
aspects of regression analysis beyond coefficients, such as prediction, may be much
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Figure 8.21 Cluster deletion diagnostics for the subjects in the linear
mixed-effect model fit to the Blackmore data: influence on the
fixed effects coeflicients, including Cook’s distances.

less affected by collinearity (as discussed in Weisberg, 2014, Sections 4.1.5 and 10.1,
and Fox, 2016, chap. 13).

The estimated sampling variance of the jth regression coeflicient may be writ-
ten as

o2 1

(n—1)s . 1- R

Var(4) =
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Diagnostic Plots
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Figure 8.22 Cluster deletion diagnostics for the subjects in the linear
mixed-effect model fit to the Blackmore data: influence on the
estimated random-effects parameters. The top panel is for the
standard deviation of the subject-specific intercepts, the middle
panel is for the estimated autoregression parameter for the errors,
and the bottom panel is for the log of the residual standard
deviation.

where 57 is the estimated error variance, 5]2 is the sample variance of x;, and 1/(1 —
R]Z), called the variance inflation factor (VIF;) for by, is a function of the multiple
correlation R; from the regression of x; on the other xs. The variance inflation factor
is a simple measure of the harm produced by collinearity: The square root of the VIF
indicates how much the confidence interval for j3; is expanded relative to similar
uncorrelated data, were it possible for such data to exist, as would be the case, for
example, in a designed experiment. If we wish to explicate the collinear relationships
among the predictors, then we can examine the coefficients from the regression of
each predictor with a large VIF on the other predictors.
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The variance inflation factor is not straightfowardly applicable to sets of related
regressors for multiple-degree-of-freedom effects, such as polynomial regressors,
spline regressors, or contrasts constructed to represent a factor. Fox and Monette
(1992) generalize the notion of variance inflation by considering the relative size
of the joint confidence region for the coeflicients associated with a related set of
regressors. The resulting measure is called a generalized variance inflation factor or
GVIE?! If there are p regressors in a term, then GVIF/? is a one-dimensional
expression of the decrease in precision of estimation due to collinearity, analogous
to taking the square root of the usual variance inflation factor. When p =1, the
GVIF reduces to the VIE.

The vif () function in the car package calculates variance inflation factors for
the terms in a linear model. When each term has one degree of freedom, the VIFs
are returned; otherwise the GVIFs are calculated.

As a first example, consider the data on the 1980 U.S. Census undercount in
the data frame Ericksen (Ericksen, Kadane, & Tukey, 1989):

summary (Ericksen)

minority crime poverty

Min. : 0.70 Min. : 25.0 Min. : 6.80

Ist Qu.: 5.03 Ist Qu.: 48.0 1st Qu.: 9.95

Median :15.80 Median : 55.0 Median :12.50

Mean :19.44 Mean : 63.1 Mean :13.47

3rd Qu.:28.20 3rd Qu.: 73.0 3rd Qu.:16.60

Max. :72.60 Max. :143.0 Max. :23.90
language highschool housing city

Min. : 0.20 Min. :17.5 Min. : 7.0 city :16

1st Qu.: 0.50 st Qu.:27.4 st Qu.: 9.4 state:50

Median : 0.85 Median :31.6 Median :11.5

Mean 0 1.93 Mean :33.6 Mean :15.7

3rd Qu.: 2.35 3rd Qu.:41.7 3rd Qu.:20.3

Max. :12.70 Max . :51.8 Max. :52.1

conventional undercount

Min. : 0.00 Min. :-2.31

1st Qu.: 0.00 1st Qu.: 0.32

Median : 0.00 Median 1.45

Mean 0 11.73 Mean 1.92

3rd Qu.: 9.75 3rd Qu.: 3.31

Max. :100.00 Max. : 8.18

21 * Let Ry represent the correlation matrix among the regressors in the set in question, Ry the correlation
matrix among the other regressors in the model, and R the correlation matrix among all of the regressors in
the model. Fox and Monette show that the squared area, volume, or hypervolume of the ellipsoidal joint
confidence region for the coefficients in either set is expanded by the generalized variance inflation factor
det R11 det R22

detR

relative to similar data in which the two sets of regressors are uncorrelated with each other. This measure is

GVIF =

independent of the bases selected to span the subspaces of the two sets of regressors and so, for example, is
independent of the contrast-coding scheme employed for a factor.
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These variables describe 66 areas of the United States, including 16 major cities, the
38 states without major cities, and the “remainders” of the 12 states that contain
the 16 major cities. The following variables are included:

* minority: percentage of residents who are black or Hispanic

* crime: serious crimes per 1000 residents

* poverty: percentage of residents who are poor

* language: percentage having difficulty speaking or writing English

* highschool: percentage of those 25 years of age or older who have zor

finished high school
* housing: percentage of dwellings in small, multiunit buildings
e city: a factor with levels "state™ and "city"

* conventional: percentage of households counted by personal enumera-
tion (rather than by mail-back questionnaire with follow-ups)

* undercount: the estimated percentage undercount (with negative values
indicating an estimated overcount)

The Ericksen data set figured in a U.S. Supreme Court case concerning correction
of the Census undercount.
We regress the Census undercount on the other variables in the data set:

mod.census <- lm(undercount ~ ., data=Ericksen)
brief (mod.census, pvalues=TRUE)

(Intercept) minority crime poverty language

Estimate -0.611 0.079834 0.0301 -0.1784 0.2151
std. Error 1.721.0.022609 0.0130 0.0849 0.0922
Pr(>|tl|) 0.724 0.000827 0.0241 0.0401 0.0232
highschool housing citystate conventional
Estimate 0.0613 -0.0350 -1.160 0.036989
Std. Error 0.0448 0.0246 0.771 0.009253
Pr(>|t]) 0.1764 0.1613 0.138 0.000186

Residual SD = 1.43 on 57 df, R-squared = 0.708

The dot (.) on the right-hand side of the model formula represents all of the
variables in the Ericksen data frame with the exception of the response,
undercount.

Checking for collinearity, we see that the three coefficients for minority,
poverty, and highschool have variance inflation factors exceeding 4, indicating
that confidence intervals for these coefficients are more than twice as wide as they
would be for uncorrelated predictors:

vif (mod.census)
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minority crime poverty language
5.0091 3.3436 4.6252 1.6356
highschool housing city conventional
4.6192 1.8717 3.5378 1.6913

To illustrate the computation of generalized variance inflation factors, we re-
turn to Ornstein’s least-squares interlocking-directorate regression (fit on page 408),
where it turns out that collinearity is relatively slight:

vif (mod.ornstein)

GVIF Df GVIF”(1/(2*Df))

log(assets) 1.9087 1 1.3816
nation 1.4434 3 1.0631
sector 2.5968 9 1.0544

The vif () function can also be applied to generalized linear models,** such as
the quasi-Poisson regression model fit to Ornstein’s data (page 423):

vif (mod.ornstein.qgp.2)

GVIF Df GVIF”(1/(2*Df))

log2 (assets) 2.6171 1 1.6178
nation 1.6196 3 1.0837
sector 3.7178 9 1.0757

The same approach works for the fixed-effect coefficients in linear and generalized
linear mixed models.

Other, more complex, approaches to collinearity include principal-components
analysis of the predictors or standardized predictors and singular-value decomposi-
tion of the model matrix or the mean-centered model matrix. These, too, are simple
to implement in R: See the princomp (), prcomp (), svd (), and eigen () func-
tions (the last two of which are discussed in Section 10.3).

8.9 Additional Regression Diagnhostics

There are several regression-diagnostics functions in the car package that we don’t
describe in this chapter:

boxCoxVariable (): Computes a constructed variable (Atkinson, 1985) for the
Box-Cox transformation of the response variable in a linear model. The con-
structed variable is added to the regression equation, and an added-variable
plot for the constructed variable in the augmented regression then provides a
visualization of leverage and influence on the determination of the normal-
izing power transformation of the response.

22 Thanks to a contribution from Henric Nilsson.
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boxTidwell (): Fitsthe model y = f +ﬁ1x1>‘1 +-- -—I—ﬁ/ex,jk—i—s, for positive xs, es-
timating the linearizing power transformation parameters Ay, . . . , A, by max-
imum likelihood using an algorithm suggested by Box and Tidwell (1962).
Not all of the regressors (xs) in the model need be candidates for transforma-
tion. Constructed variables for the Box-Tidwell power transformations are
simply x; log(x]-); added-variable plots for the constructed variables, added to
the linear regression of y on the xs, visualize leverage and influence on the

determination of the linearizing transformations ;.

durbinWatsonTest (): Computes autocorrelations and generalized Durbin-
Watson statistics (Durbin & Watson, 1950, 1951), along with their boot-
strapped p-values, for the residuals from a linear model fit to time-series data.
The durbinWatsonTest () function is discussed in the online appendix to
the R Companion on time-series regression.

inverseResponsePlot (): For a linear model, this function provides a visual
method for selecting a normalizing response transformation. The function
draws an inverse response plor (Weisberg, 2014), with the response y on the
vertical axis and the fitted values j on the horizontal axis, and uses nonlinear
least squares to estimate the power A in the equation j = &y + by, adding
the fitted curve to the graph.

leveneTest () : Computes Levene’s test (see Conover, Johnson, & Johnson, 1981)
for homogeneity of variance across groups defined by one or more factors in
an analysis of variance.

spreadLevelPlot (): Applied to alinear model, spreadLevelPlot () gener-
alizes Tukey’s spread-level plot for exploratory data analysis (Tukey, 1977),
plotting log absolute studentized residuals versus log fitted values (see Fox,
2016, Section 12.2). A positive relationship in the spread-level plot indicates
a tendency of residual variation to increase with the magnitude of the re-
sponse, and theslope of a line fit to the plot (say &) can be used to select
a variance-stabilizing power transformation (the 1 — & power). The spread-
level plot requires a positive response and positive fitted values; negative ficted
values are ignored.

yjPower () : This function, which implements a method due to Yeo and Johnson
(2000), provides an alternative to the benPower () family of modified power
transformations when there are zero or negative values in the variable to be
transformed.

810 Complementary Reading and
References

* Residuals and residual plots for linear models are discussed in Weisberg

(2014, Sections 9.1-9.2). Added-variable plots are discussed in Weisberg
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(2014, Section 3.1). Outliers and influence are taken up in Weisberg (2014,
chap. 9).

* Diagnostics for unusual and influential data are described in Fox (2016,
chap. 11); for nonnormality, nonconstant error variance, and nonlinearity
in Fox (2016, chap. 12); and for collinearity in Fox (2016, chap. 13). Diag-
nostics for generalized linear models are taken up in Fox (2016, Section 15.4).

* A general treatment of residuals in models without additive errors, which
expands on the discussion in Section 8.6.1, is given by Cox and Snell (1968).

* For further information on various aspects of regression diagnostics, see
R. D. Cook and Weisberg (1982, 1994, 1997, 1999), Fox (1991), R. D. Cook
(1998), and Atkinson (1985).
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