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109

4 Probability Distributions

What you will learn from this chapter

� How to work with and interpret probabilities
� How to distinguish between normal, uniform and Poisson distributions
� How to predict the probability of cases based upon the normal distribution
� How to round appropriately so as to minimize errors
� How to convert between raw data, z-scores and proportions
� How to identify when it is appropriate to convert between raw data, z-scores and proportions

Data skills you will master from this chapter

� Computing z-scores
� Computing the mean of variables
� Computing percentiles

CASE STUDY WHO NEEDS EXTRA TRAINING?

Jill is the owner of Jill’s Used Cars, a used 
vehicle business with a staff of 55 salespeo-
ple. With her new-found knowledge from 
previous chapters of this text, Jill decided 
it would be useful to analyse sales to see 
how well her employees were performing 
relative to each other. Because she wanted 
to examine employees’ previous patterns 
of sales, and based upon reading Chapter 1, 
she decided to use a correlational design. 
Because part of her organization’s mission 

(Continued)
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110 CHAPTER 4  

was to sell ‘the best car for the customer’, she 
decided to operationalize monthly sales as 
number of vehicles sold instead of the value 
of those vehicles.

This didn’t require much additional effort 
on Jill’s part, because she’d already been 
recording monthly sales for each employee 
and writing them on a whiteboard in the 
break room. This, she hoped, would motivate 
her salespeople to sell more. If the poorer- 
performing sellers could see how much the 
top sellers were bringing in, and they knew 
how much commission those sellers were 
earning for their increased sales, they might be 
motivated to sell a bit more. But in watching 
sales from month to month, Jill has noticed 
that her salespeople tend to stay around the 
same performance level relative to their peers.

Most of her salespeople have been working 
for her for three or more years. Jill believes the 
interrelationships between her team members 
are important, so she wants to keep as many 

employees as she can. She doesn’t want to let 
anyone go unless there’s no other option. But 
some of her employees definitely need help to 
perform at a satisfactory level.

Last week, Jill received an e-mail from an 
online training provider offering an intensive 
online sales seminar. It looks very promising, 
but it’s expensive. Jill only wants to provide 
training to those who will benefit most from 
it. From reading Chapter 3, she has identified 
the mean and variability of the monthly sales 
numbers for the past six months. There is quite 
a bit of variability, as she suspected, and sales 
month-to-month are often quite different. But 
that doesn’t tell her anything about individual 
employees. Just how different are each of their 
sales numbers? What’s the best way to compare 
employees with each other across months?

 Take a look at Jill’s employee sales  
data for yourself in chapter4.xls (Excel) or 
chapter4.sav (SPSS).

Jill’s problem is a common one. Although employee success varies, it’s not immediately 
clear just how meaningful that variance is when considering the success of individuals. As 
we learned in Chapter 3, measures of central tendency and variability are excellent ways 
to precisely consider the quantitative characteristics of a group in aggregate. But those 
statistics alone don’t tell us much if we need to make judgements about individuals within 
those groups.

In this case study, to compare employees, Jill’s only option so far is to compare the raw 
numbers of sales between employees. But if one employee sells 10 vehicles and another 
sells 11 vehicles, is the one that sold 11 vehicles really a ‘better’ seller? Or is it, perhaps, 
that the seller was just lucky? In statistics, we refer to luck as chance, and one of the major 
goals of statistics is to explore and explain the effects of chance.

We began our exploration of chance in Chapter 3 by learning about the normal  
distribution. But why do data tend to be normally distributed? Are there other common 
distributions of data? In this chapter, we will begin our exploration of chance by consid-
ering several common shapes of data and why we tend to see these shapes. As you read, 
consider how knowledge of these distributions can help Jill understand the relative perfor-
mance of her employees.

(Continued)
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4.1 Probability

To identify why data typically appear in the various shapes they appear in, we first need 
to explore the concept of probability. Probability, broadly, refers to how likely a specific 
event is to occur. It is typically expressed as a proportion (see Chapter 2, p. 27) and ranges 
from .00 (a specific event will never occur) to 1.00 (a specific event will always occur). One 
of the major purposes of statistics is to accurately assess probabilities associated with data.

In some cases, probability is very easy to compute. For example, consider a coin – one 
side is heads; the other is tails. Any time you toss the coin in the air and let it fall, it will land 
either heads-up or tails-up. If there’s nothing strange about the coin, it will fall heads-up 
about half of the time and tails-up the other half of the time. Thus, the probability of heads 
is .50. The probability of tails is also .50.

As we add more possible outcomes, the probabilities become more complex. Next con-
sider a five-sided die with the numbers 0, 1, 2, 3 and 4 on its sides. The probability that any 
particular number will land facing up when rolling that die is 1/5, which we can express as 
a probability as .20. Thus, the probability of a 0 is .20, 1 is .20, 2 is .20, 3 is .20 and 4 is 
.20. All together, these numbers add up to 1.00, since with any given roll of the die, one of 
these numbers will appear 100% of the time.

If we didn’t know ahead of time the probabilities associated with this, we could use a 
process called the classical method of assigning probability. The classical method involves 
simply doing the thing you’re curious about many, many times, and then calculating how 
many times each outcome occurred relative to the total. For example, let’s roll our five-
sided die 10000 times. In doing so, you might end up with 1942 rolls of 1, 2029 rolls of 2, 
2013 rolls of 3, 2038 rolls of 4, and 1978 rolls of 5. By calculating relative frequencies (for 
example, 1942/10000 = .1942), you can see that each is very close to .2. If I were really 
going to assign a probability to each size using this method, I’d want to collect many more 
than 10000 cases to make those numbers more stable and closer to .2.

An alternative way to assign probabilities is the relative frequency of occurrence method 
of assigning probability in which historical data are consulted. For example, if we want 
to know the probability that the person we just hired will quit within six months, we 
could consult our company’s human resources records to determine the relative frequency 
of newly hired employees that quit within six months. If we found that 56 out of the  
178 people we’ve ever hired had quit in the last six months, we could conclude that the 
probability of the new hire quitting is also 56/178 = .31, or a 31% chance.

In organizational research, probability is much more complicated, because we typically 
don’t know the total number of possibilities. In our case study, how likely is it that an 
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112 CHAPTER 4  

employee will sell ten cars in any particular month? What about six or 30? Should we 
consider 100? We could use the relatively frequency of occurrence method, but how do we 
know if last month’s sales or this month last year’s sales is a better choice? These are the 
problems that keep statisticians up at night. Without a list of every possibility, we cannot 
compute a specific, precise probability that any of these events will occur.

Fortunately, data typically take one of several common shapes, and we can compute the 
probability of data occurring within any of these shapes. The next sections will explore 
what these shapes look like and the relative probabilities of the data they contain.

Combining Probabilities

Makes a
purchase

5%

Shares link
on social

media

9%

2%

Makes a
purchase

5%

Shares link
on social

media

9%

2%

FIGURE 4.01 Unions and intersections

Sometimes you need to think and talk about probabilities in relation to one another. In 
these cases, probability often does not work the way that people intuitively think it should. 
In Figure 4.01, I’ve depicted three relative frequencies reported by a marketing department 
related to the performance of a product on their sales website. 5% of customers viewing the 
product purchase it. 9% of customers viewing it share a link to it on social media. 2% of 
customers do both. Implied by this diagram then is that 100% − 5% − 9% − 2% = 84% 
of customers viewing this product neither purchase it nor share a link. We can utilize the 
relative frequency of occurrence method to convert these numbers into probabilities; for 
example, the probability of a customer viewing this page making a purchase is .05.

So what is the probability that a customer will make a purchase or share a link? Combining 
probabilities this way is called union and is signified by the word ‘or’. To calculate this 
probability, we need to add together all of the component probabilities. In this case, 5% 
+ 2% + 9% = 16%. Thus, the probability of a customer seeing this webpage making a 
purchase or sharing a link is .16.

But what if we want to know the probability a customer will make a purchase and share 
a link? Combining probabilities is called intersection and is signified by the word ‘and’. To 
calculate this probability, we need to simply look at the intersection point alone: 2%. Thus, 
the probability of a customer seeing this webpage making a purchase and sharing a link is .02.

If making a purchase and sharing a link were unrelated events, which is to say if we 
assumed the occurrence of one does not affect the other and that nothing externally affects 
them together, we’d expect the probability of intersection to be the value of the two com-
ponent probabilities multiplied together. In this case, we’d expect a probability of .05 * .09 = .0045 
for people to both make a purchase and share a link. Because the observed value, .02, is 
much higher than that, we could conclude that they probably are related. This is the basic 
logic of hypothesis testing, which we’ll explore in much greater detail starting in Chapter 7.
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4.2 Distributions of Data
Data take different shapes, called distributions. There are several common distributions, 
three of which we’ll cover in this chapter. It’s important to realize that distributions are 
prototypes; ‘real’ data never conform perfectly to any prototype. You’ve already seen sev-
eral examples of this in the previous chapter; although the normal distribution is a nice, 
predictable bell-shaped curve, the data you examined in the examples and case study cre-
ated only a vaguely bell-shaped histogram.

Most statistical tests (especially the ones we cover in this book) are fairly robust (see 
Chapter 3, p. 80) to small variations from prototype distributions. For example, in the last  
chapter we learned that the mode and median reflect central tendency even if the data are 
skewed. So don’t worry too much that the data you collect to answer your organization’s 
research questions don’t perfectly represent the prototypes. You just need to know which 
distribution to expect given your data and take a look at a histogram to verify that it is 
roughly the shape you’re expecting.

4.2.1 Uniform Distribution
The simplest data distribution is the uniform distribution. In a uniform distribution, every 
possibility is equally probable. We don’t see this distribution very much among organiza-
tional data, but it is easy to interpret, so it’s a good place to start.

Let’s return briefly to die-rolling, this time with a ten-sided die with sides numbered 
from 1 to 10. If we were to roll our ten-sided die 50 times, we’d expect each number to 
appear five times. This is because each side is equally probable: each roll, the probability  
of any particular side appearing on the top of the die is .10. A bar graph of our expectations 
appears in Figure 4.02.

Side of die rolled

C
o

u
n

t

10-sided die rolls (expected)

1
0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10

FIGURE 4.02 Expected sample of n = 50 die rolls drawn from a uniform distribution
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If we were to actually roll a ten-sided die 50 times, it’s very unlikely we’d see such a per-
fect distribution. However, you can easily see why the distribution is called ‘uniform’ – all 
options are equally probable. With real data, we’d be more likely to see something like the 
two samples in Figure 4.03.

1
0
1
2
3
4

C
o

u
n

t

5
6
7

2 3 4 5 6

Side of die rolled

10-sided die rolls (Sample 1)

7 8 9 10 1
0
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o
u

n
t 6

8

5

7

9

2 3 4 5 6

Side of die rolled

10-sided die rolls (Sample 2)

7 8 9 10

FIGURE 4.03 Examples of observed samples (n = 50) drawn from a uniform distribution

Both of these figures show data from 50 rolls of a 10-sided die. Yet, they look dra-
matically different from our expected distribution. This is because of chance. Although 
we expect a perfectly uniform distribution, real data are typically messy, as we see here, 
and luck alone can lead to substantial variation from the expected distribution. The more 
that data deviate from an expected distribution, the more sceptical we must be when inter-
preting statistics that expect that distribution. Fortunately, there’s a fairly easy way to get 
closer-to-expected distributions of real data: large samples. We’ll discuss this principle in 
much more detail in the next chapter.

4.2.2 Poisson Distribution
The Poisson (pronounced: pwah-SAHN) distribution describes data containing small num-
bers of independent counts. It typically occurs when there are a small number of observa-
tions for a relatively large number of opportunities for those observations to occur. Like 
the normal distribution, it is a spread of random data.

Consider an example of how a Poisson distribution might appear in an organizational 
context. In a call centre, employees are rarely asked by the people they are calling to esca-
late the call to a supervisor. Every customer has the power to ask this, but relatively few 
actually do. On average, the call centre handles two elevated calls per day. This creates the 
Poisson distribution in Figure 4.04.

Thus, on roughly 13.5% of days, the call centre has no escalated calls. On 27% of days, 
the call centre has one escalated call. On 27% of days, the call centre has two. On 18% of 
days, the call centre has three. On 9% of days, the call centre has four (and so on).

This distribution thus appears similar to the skewed normal distribution we discussed in 
Chapter 3, with one key difference: it only applies to discrete, nominal data (counts; see 
Chapter 1, p. 8).
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4.2.3 Normal (and Standard Normal) Distributions

Number of calls expected

Probability of calls each day

P
ro

b
ab

ili
ty

10
0

.05

0.1

.15

0.2

.25

0.3

2 3 4 5 6 7 8 9 10

FIGURE 4.04 Example of a Poisson distribution from a call centre

FOUNDATION CONCEPTS

A normal distribution is a common shape in which data are found resembling a bell or hill. See 
Chapter 3, p. 77.

The standard deviation is the average distance between all scores in a variable and their mean, 
represented in a population as σ (sigma) and in a sample as s, and is also the square root of the 
variance. See Chapter 3, p. 90.

Normal distributions are the most common shape of data you are likely to see, especially if 
you ask many organizational questions with surveys. We learned a bit about these distribu-
tions in Chapter 3. When data are normally distributed, cases are more likely to occur close 
to the mean and increasingly unlikely to appear the further we move away from the mean 
in either direction. This is what creates the bell shape.

We sometimes refer to the standard normal distribution, which is a perfectly normal dis-
tribution with a mean of zero and a standard deviation of one (μ = 0; σ = 1). This is also 
called a z-distribution. You can see a z-distribution in Figure 4.05.

The standard normal distribution is useful because it is defined in terms of standard 
deviations. When looking at a standard normal distribution, −2 is two standard deviations 
below the mean, −1 is one standard deviation below the mean, 0 is the mean, +1 is one 
standard deviation above the mean, and +2 is two standard deviations above the mean. 
These numbers are called z-scores. They don’t need to be whole numbers; for example, 
z = −1.29 describes a score 1.29 standard deviations below the mean. A z-score can be 
calculated from the scores in any dataset.

04_LANDER_STEP_CH 04.indd   115 15/11/2018   2:16:51 PM



116 CHAPTER 4  

←.15%

−4 −3 −2 −1 0

Standard deviations

Standard normal (z) distribution

1 2 3 4

.15%→

2.35% 2.35%

13.5% 13.5%

34%34%

FIGURE 4.05  Normal (z) distribution and percentage of cases under the curve divided between standard 
deviations

Why Might Data that We Expect to Be Normal Be Skewed?
When there is some restriction that prevents normally distributed data from moving away from the 
mean in both directions, it bunches up wherever it is blocked, creating skew. This creates a problem 
in organizational research because skew distorts the results of many common statistical tests.

For example, the collection of supervisory ratings of job performance is often tricky for organi-
zational researchers because many supervisors rate their direct reports (the employees that report 
to them) very highly. There are many reasons for this. Some supervisors don’t want to expose their 
direct reports to the risk of layoffs. Others have personal relationships with their direct reports and 
don’t want to rate them poorly regardless of their actual performance. Still other supervisors have 
a difficult time assessing the job performance of others so, to be safe, they rate every direct report 
identically.

Regardless of the reason, when responding to a five-point survey question about employee 
job performance where five is the strongest response, the mode will often be a five. Although we’d 
expect these data to be normally distributed, because there are no options higher than five, the data 
will be negatively skewed.

When analysing organizational data, z-scores are helpful because they can be standard-
ized from raw data. Raw data are data as they are collected and thus cannot be compared 
across dissimilar variables. For example, it is impossible to directly compare 18 sales with 
a rating of ‘4’ from a supervisor. However, each of these values can be standardized so 
that they are comparable. For example, 18 sales may be z = 1.1 (1.1 standard deviations 
above the mean) while ‘4’ is z = –.2 (.2 standard deviations below the mean). Therefore, 
this employee is above average in sales but slightly below average in supervisory ratings.  
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By standardizing, we can compare these numbers directly with one another (below average 
in one regard; above average in another regard).

In our case study, standardization is critical because sales fluctuate radically by month, 
regardless of employee performance. Consider an employee whose raw sales in July and 
December are 10 and 10. Doesn’t look bad, right? But if we convert these values to z-scores, 
we find that this employee’s July sales were z = –.10, whereas his December sales were  
z = −1.15. From these standardized scores, we can conclude that this employee was 
slightly below average in July and very below average in December. This information was 
not obvious from the raw data alone. Car sales are simply higher in some months than oth-
ers. By converting monthly sales to z-scores, we can therefore more accurately assess how 
well employees are doing relative to their co-workers.

4.3 Proportions of Cases within Normally 
Distributed Data

FOUNDATION CONCEPTS

A proportion is a portion of a whole represented as a decimal. For example, .35 is a proportion 
indicating 35 for every 100. See Chapter 2, p. 27.

A percentage is a portion of a whole represented as its share of 100. For example, 35% is a percent-
age indicating 35 for every 100. See Chapter 2, p. 28.

One of the advantages to collecting and analysing data that conform to a normal distribu-
tion is that the normal distribution is highly predictable. If we collected a large amount of 
normally distributed data, we would expect that:

� .15% (.0015) of cases fall below −3 standard deviations.

� 2.35% (.0235) of cases fall between −3 and −2 standard deviations.

� 13.5% (.1350) of cases fall between −2 and −1 standard deviations.

� 34.0% (.3400) of cases fall between −1 standard deviation and the mean (0).

� 34.0% (.3400) of cases fall between the mean (0) and +1 standard deviation.

� 13.5% (.1350) of cases fall between +1 and +2 standard deviations.

� 2.35% (.0235) of cases fall between +2 and +3 standard deviations.

� .15% (.0015) of cases fall above +3 standard deviations.
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We also have some broader expectations:

� 50% (.50) of cases fall above the mean (0).

� 50% (.50) of cases fall below the mean (0).

You can actually see these percentages in Figure 4.05 above. Since the distribution rep-
resents 100% of the data, we can cut it up and look at the area under the curve to identify 
what percentage of cases fall between any two particular points of interest.

For example, if an employee’s job performance was z = +1, that employee’s perfor-
mance would be higher than roughly 84% of her fellow employees. I got this number by 
adding the percentage of cases falling below the mean (50%) and the percentage of cases 
between 0 and +1 standard deviations (34%). That employee’s performance would also be 
below approximately 16% of employees (13.5% + 2.35% + 0.15%).

By converting between raw scores, z-scores and the proportion of cases associated with 
particular z-scores, we can make many meaningful conclusions about the frequency of val-
ues relative to their populations. Exploring this concept mathematically will make up the 
remainder of this chapter.

4.3.1 Converting from Raw Data to z-Scores

Accounting for Rounding Error
If you are using this textbook as part of a course, and you haven’t talked about it already, this is 
an excellent point at which to talk to your instructor about measurement precision. Calculation in 
statistics often involves working with very small numbers, and the computations you’ll be doing with 
z-scores are no exception. Every time you round a value, you lose a little bit of precision, which can 
lead to your final answer being incorrect.

To account for this, this text recommends carrying out all computations to six decimal places 
mid-computation, only then rounding the final answer to two decimal places. All computations dis-
played in this text from this point forward will adopt this strategy. However, if you are using this text for 
a course, your instructor may want your final answers to be more or less precise; if you don’t know 
your instructor’s expectation on this yet, you should ask as soon as possible.

To convert a raw score to a z-score, you must know the mean and standard deviation of 
the sample or population you want to compare it with. You might calculate this yourself 
from a dataset, or you might be given this information.

If you were analysing data from within your own organization, you would probably 
have access to the raw data and would therefore be able to compute the mean and standard 
deviation for yourself. But there are times when you might not have access to this informa-
tion, or you might want to compare it with population data. Whichever mean and standard 
deviation you choose, this will be the comparison group for your z-scores.

For example, if you were worried about the attitudes toward customer service shown by 
some of your employees, you might hire a consultant to administer a customer service sur-
vey to them to assess this. After getting the results, you don’t necessarily want to know how 
your employees compare with each other – instead, you want to know how they compare 
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z
x x

s
=

−

FIGURE 4.06 Annotated z-score formula for a sample

with customer service employees in general. In this case, you might ask the consultant to 
provide the mean and standard deviation of their survey across all employees they’ve ever 
assessed. Any z-scores computed with this mean and standard deviation will be in reference 
to that group. A z = −1 in this context would indicate an employee with customer service 
attitudes one standard deviation below employees in general.

Regardless of the source of your comparison group, the formulas for converting a raw 
score to a z-score are similar whether you have samples or populations for comparison – 
see Figures 4.06 and 4.07.

Sample mean  
(see Ch. 3, p. 83)

Sample standard deviation  
(see Ch. 3, p. 91)

z
x

=
− µ
σ

FIGURE 4.07 Annotated z-score formula for a population

Population mean  
(see Ch. 3, p. 88)

Population standard deviation  
(see Ch. 3, p. 89)

Take a moment to think about why the z-score formula is constructed this way. In each 
formula, we first subtract the sample or population mean from the value we’re interested 
in. This results in a difference score representing the distance between the score and the 
mean. In the second step, we divide this difference by the standard deviation to convert the 
difference to standard deviation units.

As an example, consider the value of ‘15’ sales from our case study dataset, coming 
from November sales. The mean of November sales is 12.327272, while the standard 
deviation of November sales is 4.830668. In the first step of the computation, we calculate 
15 − 12.327272, which gives us 2.672728. This number indicates the difference in sales 
between the case and the mean; in other words, 15 sales is 2.672728 sales higher than the 
mean. In the second step of the computation, we divide 2.672728 by the standard devia-
tion, 4.830668, which gives us .553283. Therefore, the score is .55 standard deviations 
above the mean, and z = .55.

If we think about the relationship between these two numbers, this should seem obvious. 
2.672728 is roughly half of 4.830668, so a z of .55 makes sense – the score (15) and the 
mean (12.327272) are roughly half of one standard deviation apart. We can see the steps 
of this computation in Figure 4.08, broken down step by step.
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4.3.2 Converting from z-Scores to Raw Data
To convert a raw score to a z-score, use the formula in Figure 4.08 in reverse. The formula 
solves for z, but we want to solve for x. Fortunately, as you can see from Figure 4.09, it’s 
quite easy to convert.

z
x

=
− x
s

=
−

=

= =

15 12 327272
4 830668

2 672728
4 830668

553283 55

.
.

.

.

. .

FIGURE 4.08 Step by step calculation of a z-score from a sample

FIGURE 4.09 Algebraically modifying z-score formula to solve for a raw score

Here’s the starting formula:
z

x
=

− x
s

Next, we multiply both sides by s: zs = −x x

Finally, we add x– to both sides: zs x x+ =

FIGURE 4.10 Annotated formula to calculate a raw score from a sample z-score

Sample mean 
(see Ch. 3, p. 83)

Sample standard deviation 
(see Ch. 3, p. 89)

x zs x= +

From this, you can see that converting a z-score back to a raw score requires you to 
know three pieces of information: the z-score, the standard deviation and the mean. This 
formula, like the one before, can be expressed in terms of either samples or populations 
(Figures 4.10 and 4.11).
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x zs x= +
= +
= +
= =

2 4 830668 12 327272
9 661336 12 327272
21 988608

( . ) .
. .

. 221 99.

FIGURE 4.12 Step by step calculation of a raw score from a sample z-score

In our case study dataset, imagine that Jill wanted to reward every employee selling more 
than +2 standard deviations of vehicles in November. What score would she look for? We’ll 
use the same values from the example in the previous section: the mean of November sales is 
12.327272, while the standard deviation of November sales is 4.830668 – see Figure 4.12.

FIGURE 4.11 Annotated formula to calculate a raw score from a population z-score

Population mean 
(see Ch. 3, p. 88)

Population standard deviation 
(see Ch. 3, p. 89)

x z= +σ µ

Thus, Jill would reward anyone selling 22 or more vehicles in November.

4.3.3 Converting from z-Scores to Proportions
Although conversions between raw scores and z-scores are interesting, the most use-
ful information is when we then convert those z-scores to proportions. We’ve already 
done some simple conversions using the proportions associated with z = −3, −2, −1, 
0, 1, 2 and 3 shown in the normal distribution in Figure 4.05 above. For example, 
84% of cases fall above z = −1 (50% + 34%). But what if we want proportions for  
other z-scores? For that, we must reference the z-table, which appears in Appendix A1 
(see p. 424).

In the z-table, you’ll see columns and rows representing z-scores. To find the value in the 
table corresponding to any particular z-score, add the numbers you find at the top of the 
table with the numbers you find on the left side of the table. For example, if you want to 
find z = 2.36, look for the row labelled 2.3 and the column labelled .06. The value where 
these two numbers intersect is .0091 (Figure 4.13).
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z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2,2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0,0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0,0060 0.0059 0,0057 0.0055 0.0054 0,0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0_0035 0,0034 0.0033 0,0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0,0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

FIGURE 4.13 Locating a z-score in the z-table (Appendix A1)

So what does this value mean? This is the proportion of cases falling above this positive 
z-score. Thus, .91% of cases fall above z = 2.36. To determine how many cases fall below 
this point, subtract it from 1. In this example, 1 − .0091 = .9909. Therefore, 99.09% of 
cases fall below z = 2.36. You can see this graphically in Figure 4.14.

−4 −3 −2 −1 0 1 2 3

z = 2.36

99.09%

.91%

4

FIGURE 4.14 z-distribution and percentage of cases falling above z = +2.36, based upon the z-table

We sometimes refer to the smaller portion of this graph as the positive ‘tail’ of the dis-
tribution. So what do we do if our z is negative? The process is exactly the same – because 
the z-distribution is symmetrical, the proportions are the same on the negative tail. Simply 
look up the value associated with the positive z-score (Figure 4.15).

So given this, what’s the proportion of values outside z ±2.36? Just add them together: 
.91% + .91% = 1.82%. We can then compute the remainder (the values inside z ±2.36) 
as 1 −.0182 = 98.18% (Figure 4.16). The distribution always contains a total of 100% of 
all values. In this case, .91% + 98.18% + .91% = 100%.
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−4 −3 −2 −1 0 1 2 3

z = −2.36

.91%

4

99.09%

FIGURE 4.15 z-distribution and percentage of cases falling below z = −2.36, based upon the z-table

−4 −3 −2 −1 0 1 2 3

z = −2.36

.91%

4

z = 2.36

98.18%

.91%

FIGURE 4.16 z-distribution and percentage of cases falling outside of z = ±2.36, based upon the z-table

Why Does the z-Table End at 3.59?
Sometimes, when looking at the z-table, students conclude that z must always be between −3.59 
and +3.59. This is not true! In fact, a z-score can be absolutely any value from negative infinity to 
positive infinity. Values below −3.59 or above 3.59 are simply extremely uncommon.

For example, if we look in Appendix A1, we see that the proportion associated with 3.59 is .0002. 
That means that only 0.02% of cases fall above 3.59 or below −3.59 (or .04% of cases beyond 
both). That is, we’d expect only four cases per 10000 to be this or more extreme. That doesn’t mean 
these scores don’t exist; in fact, you’ll find these in your own data from time to time if you work with 
statistics long enough. It just means that you don’t see them very often!
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4.3.4 Converting from Proportions to z-Scores
Just as we might need to convert a z-score into a proportion, we might need to convert 
a proportion into a z-score. To do this, we simply follow the procedure above in reverse.

We need to do this most often when we are interested in percentiles. A percentile rep-
resents the point at which a particular percentage of a dataset falls below a specific point. 
For example, if the 90th percentile equals 10, 90% of data are smaller than 10 and 10% of 
data are bigger than 10. The 50th percentile is the median (see Chapter 3, p. 81) – the point 
at which 50% of data are bigger and 50% of data are smaller. You might see a percentile 
expressed as a proportion (e.g. the 30th percentile might be represented as .30).

So when converting between proportions and z-scores, you might see a question like 
this: ‘What z-score corresponds to the 63rd percentile?’ When trying to answer such ques-
tions, draw it to help yourself visualize what the question is asking. The 63rd percentile is 
greater than the median (the 50th percentile), so the dividing line will be somewhere on 
the right side of the distribution. 63% of scores fall below the point you’re interested in, 
which means that 37% (100% − 63%) fall above it. It doesn’t matter exactly where you 
draw the line, as long as it’s on the correct side of the median. What you draw should look 
something like Figure 4.17.

Median

63%

37%

FIGURE 4.17 The 63rd percentile of a z-distribution

Although the question asks about the ‘63rd percentile’, the z-table only contains infor-
mation about the tails. So instead of 63%, you’ll be looking up 37%.

Next, scan the z-table in Appendix A1 until you find the two proportions that surround 
.37 – one bigger and one smaller. In this case, the two closest proportions are .3707 and 
.3669. The cell we will concentrate on will be .3707, as it is closer to.37. As before, add 
together the column and row headings to determine the associated z-score. In this case, 
.3707 is in row .3 and column .03 (Figure 4.18). Thus, the z-score we’re looking for is  
.3 + .03 = .33. The 63rd percentile corresponds to z = .33.
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z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0,4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0,3372 0.3336 0.3300 0.3264 0,3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0,2843 0.2810 0,2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0,2514 0.2483 0.2451

FIGURE 4.18 Identifying the z-score corresponding to the 63rd percentile

If the z-score we were looking for was on the left side of the median, we’d simply use a 
minus sign with that value to reflect the negative z-score. You can use this general proce-
dure for any type of conversion between a proportion and a z-score.

4.3.5 Converting between Proportions and Raw Data
When converting between raw data, z-scores and proportions, you will always use some 
combination of the tools listed above. These relationships are illustrated in Figure 4.19.

Raw data z-scores
Proportion/
percentile

FIGURE 4.19 Illustration of necessary conversions between raw data and proportions/percentiles

You can consult Figure 4.19 whenever asked to make a conversion. For example, imagine 
you were provided a proportion and asked to identify the raw score at which that propor-
tion would be found. Since you can never convert directly from a proportion, you must 
convert to a z-score first.

For example, in our case study, what would Jill do if she wanted to identify how many 
cars an employee would have sold in August if that employee was performing at the  
20th percentile. From the data, we know that the mean of August sales is 9.727273 and its 
standard deviation is 2.805118.

First, Jill needs to draw it out (Figure 4.20).
This time, 20% of values fall in the tail, so that’s the number we’ll look up. When look-

ing in the z-table (Appendix A1), the two closest values we can find are .2005 and .1977. 
The closer is .2005, so we’ll use that – its associated z-value is .84 (Figure 4.21). Because 
the tail is on the left side of the distribution, we know that the z-score is negative; thus, the 
z-score associated with the 20th percentile is z = − .84.
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80%

Median

20%

FIGURE 4.20 Drawing of 20th percentile with relevant percentages

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0,4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0,3372 0.3336 0.3300 0.3264 0,3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0,2843 0.2810 0,2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0,2514 0.2483 0.2451

0.7 0.2420 0,2389 0,2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0,2148

0.8 0.2119 0,2090 0.2061 0.2033 0.2005 0,1977 0.1949 0.1922 0.1894 0,1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

FIGURE 4.21 Looking up the 20th percentile in the z-table (Appendix A1)

Next, we need to use the formula above to convert z-scores to raw data. The mean and 
standard deviation are provided in the question, so we’ll use those values in the formula 
(Figure 4.22).

x zs x
x
x
x

= +
= − +
= − +
=

. * . .
. .

.

84 2 805118 9 727273
2 356299 9 727273

7 3709774 7 37= .

FIGURE 4.22 Step by step calculation of raw score from a percentile

Thus, the 20th percentile is associated with 7.37 cars sold.
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Summary of Conversions with z-Scores
Conversion from Information needed Procedure/formula used

Raw data to 
z-score

A score, the mean, and 
the standard deviation. 
You may need to 
calculate the mean and
standard deviation or 
they may be provided 
for you.

Sample mean (see Ch. 3, p. 83)

z
x x

s
=

−

Sample standard deviation (see Ch. 3, p. 89)

Population mean (see Ch.3, p. 88)

z
x

=
− µ
σ

Sample standard deviation (see Ch. 3, p. 89)

z-scores 
proportion/
percentile

A z-score and a z-table 
(found in Appendix A1).

Find the z-score in the z-table by scanning across 
columns and down rows, adding the column head and 
row head together. For example, column .03 and row 1.0 
intersect at z =.03. The number you find
there is the proportion of values found in the tail. It you are 
interested in the proportion of values in the tail, use this 
value. If you are interested in the proportion of values in 
the rest of the distribution, subtract this value from 1.

Proportion/
percentile to 
z-score

A proportion! percentile 
and a z-table (found in 
Appendix A1).

Find the proportion in the z-table by looking for
the closest value to the proportion you are looking
for. Next, add the numbers found at the left of the row 
and the top of the column to compute the z-score. For 
example. the closest proportion to .01 is .0099, which 
corresponds to z = 2.33. If you are identifying a proportion 
in the lower tail (left side of the distribution), your z-score 
will be negative.

z-score to raw 
data

A z-score, the
mean, and the
standard deviation. You 
may need to calculate 
the mean and standard
deviation or they may be 
provided for you.

Sample mean (see Ch. 3, p. 83)

x zs x= +

Sample standard deviation
(see Ch. 3, p. 89)

Population mean
(see Ch.3, p. 88)

x z= +σ µ

Sample standard deviation
(see Ch. 3, p. 89)

FIGURE 4.23 Summary table of conversions involving z-scores
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4.4 Applying Probability Distributions
To apply what you’ve learned from this chapter, consider the following case study, ques-
tions posed about that case study, and discussion of those questions.

4.4.1 Application Case Study
Raphael is head sales agent of Where the Heart Is, a residential estate agency. He is respon-
sible for tracking sales for the entire firm. One of the owner’s goals is for Where the Heart 
Is to sell across the full spectrum of the housing market, from the smallest flat to the largest 
mansion. This, the owner believes, will make the broadest impression on potential clients 
through word-of-mouth, improving the overall number of clients.

What statistical approach might Raphael use to ensure this goal is being met? He has 
access to the full list of houses put on the market over the past year, as well as the list of 
houses managed by Where the Heart Is. What statistics could he use to ensure that the 
owner’s goal is being met?

4.4.2 Application Discussion
Like most real business scenarios calling for statistics, there are multiple ways to approach 
Raphael’s problem. However, an obvious approach here would be to use z-scores.

Raphael actually has a population – the current housing market. Since the owner’s goal 
is for house values from Where the Heart Is to match those of the market, we can examine 
the z-score of each house represented by Where the Heart Is in relation to that market.

For example, if houses for Where the Heart Is were z = +.5, z = +1.0 and z = +1.3, 
we’d know from the mean of these z-scores (z = +.93) that the houses Where the Heart Is 
tends to sell are above average for the current housing market. We could further conclude 
from that average that houses sold were one standard deviation above the average house 
sold in the population, which is around the 84th percentile. If the owner’s goal was being 
met, the average z-score should be close to zero, because the average house sold by Where 
the Heart Is should be approximately equal to the average house on the overall market.

EXCEL

 Download the Excel dataset for the demonstration below as chapter4.xls. As you read this 
section, try to apply the terms you’ve learned in this chapter to the dataset and follow along with 
Excel on your own computer.

 You can also get a video demonstration of the section below under Excel Video: Chapter 4.

Exploring Probability Distributions in Excel and SPSS
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In our case study, Jill is trying to identify which employees are consistently weak in sales. She 
has collected data on employee sales for the months July through December. Try using the tech-
niques you learned in Chapter 3 to identify the mean and standard deviation of each month. You’ll 
find that there is quite a bit of variation from month to month (if you don’t find the values given in 
Figure 4.24, review Chapter 3’s lesson on Excel).

FIGURE 4.24 Means and standard deviations from case study dataset in Excel

If we look at any one month, we may not get the whole story; perhaps an employee was simply 
having a bad month, but it doesn’t reflect their overall performance. But if we add all sales across 
all months for each employee, we may miss patterns of poor performance. For example, what if an 
employee does well during the December rush, but is consistently poor during all other months? To 
address this problem, we will convert each month’s sales for each employee to z-scores, so that 
we can identify how well each employee was doing each month relative to his or her co-workers.

First, create six new columns to represent where our new z-values will go (Figure 4.25).

FIGURE 4.25 Six new column labels for z-scores in Excel

In G2, we want the number we find to represent the z-score for the first employee’s July sales. 
We’ll create this formula just like we would if we were doing it by hand: a z-score equals the score 
minus the mean, all divided by the standard deviation. We’ll use the mean and standard deviation 
formulas we learned in Chapter 3.

1 Excel 2010 or later: To compute the z-score in G2, type: =(A2-AVERAGE(A:A))/STDEV.S(A:A).
2 Excel 2007 or earlier: To compute the z-score in G2, type: =(A2-AVERAGE(A:A))/STDEV(A:A).

You should end up with something like Figure 4.26.

FIGURE 4.26 Computed z-scores for first case’s data in Excel
(Continued)
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This formula is a little different than the ones we’ve used before now. Instead of naming specific cells – 
like A2:A56 – we’ve named an entire column. Excel will ignore cells with text in them, like the word ‘July’.

This is an important change because it changes how Excel fills formulas. Do you remember the 
fill from Chapter 3? We did a fill when we clicked on the little black box at the bottom-right corner 
of a cell and dragged it right to copy the content of the cells we’d highlighted. When you run a fill, 
Excel automatically updates the references of all cells copied to match wherever you copied them. 
For example, if you filled one cell right from a cell that referenced A2, the new cell’s formula would 
reference B2 instead (because B2 is one cell to the right of A2).

When filling down, this becomes a problem if we’ve named specific cells. For example, if we’d named 
A2:A56 and filled down, the next cell would contain A3:A57, the next would contain A4:A58, and so on. 
We want our fill to always reference the entire column, so this is incorrect. By referencing A:A instead, 
Excel will simply copy A:A in every cell. When we fill right, Excel will still know to convert our A:A to B:B.

Do this now – fill down from G2 by highlighting G2 and click-dragging the little black box down 
to G56. Once at G56, click-drag again to the right to L56. You should now have a new table of values 
with z-scores for every employee for every month, as in Figure 4.27.

FIGURE 4.27 Dataset with z-scores filled down in Excel

Now that we have z-scores for every month, we can more meaningfully compute a mean. Create 
a new column M with the mean of scores in columns G through L. If you aren’t sure how to do this, 
review the Excel portion of Chapter 3 (see p. 96). You should end up with something like Figure 4.28.

FIGURE 4.28 Mean calculated from six z-scores in Excel

(Continued)
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SPSS

 Download the SPSS dataset for the demonstration below as chapter4.sav. As you read this 
section, try to apply the terms you’ve learned in this chapter to the dataset and follow along with 
SPSS on your own computer.

 You can also get a video demonstration of the section below under SPSS Videos: Chapter 4.

In our dataset, Jill is trying to identify which employees are consistently weak in sales. She has 
collected data on employee sales for the months July through December. Try using the techniques 
you learned in Chapter 3 to identify the mean and standard deviation of each month. You’ll find that 
there is quite a bit of variation from month to month (if you don’t find the values shown in Figure 4.30, 
review Chapter 3’s lesson on SPSS).

Now that we have mean z-scores for each employee, we should convert them to percentiles to 
make the z-scores more interpretable. Create a new column N labelled ‘Percentile’.

1 Excel 2010 or later: To compute the percentile in N2, type: =NORM.S.DIST(M2, TRUE).
2 Excel 2007 or earlier: To compute the percentile in N2, type: =NORMSDIST(M2).

You should end up with percentiles as shown in Figure 4.29.

FIGURE 4.29 Percentiles computed from mean z-scores

Sort the data in column N in ascending order to see the lowest-ranking employees first. If you 
don’t remember how to sort, see Chapter 2 (p. 47).

Now the situation is a bit clearer. Roughly a dozen employees stand out as particularly low sell-
ers, month over month. Their z-scores are always negative (they are always below average), and 
there’s a fairly steep decline in percentiles down to this lower group. While other employees may 
have good months and bad months, these employees are consistently poor. That means these 
employees are definitely the ones that Jill should target. But what to do with them is up to her.

(Continued)
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FIGURE 4.30 Descriptive statistics from case study dataset in SPSS

If we look at any one month, we may not get the whole story; perhaps an employee was 
simply having a bad month, but it doesn’t reflect their overall performance. But if we add all sales 
across all months for each employee, we may miss patterns of poor performance. For example, 
what if an employee does well during the December rush, but is consistently poor during all 
other months? To address this problem, we will convert each month’s sales for each employee to 
z-scores, so that we can identify how well each employee was doing each month relative to his 
or her co-workers.

In SPSS, we do this with a tool we first tried in Chapter 3 – Descriptives. Open Analyze, then 
Descriptive Statistics, then Descriptives (Figure 4.31).

FIGURE 4.31 Menu option to run Descriptive statistics in SPSS

Move all of your variables to the right (again, see Chapter 3 if you’ve forgotten how).

(Continued)

04_LANDER_STEP_CH 04.indd   132 15/11/2018   2:16:58 PM



133PROBAB IL I TY  D ISTR IBUT IONS

This time, we’re going to change one little thing – the checkbox that says ‘Save standardized 
values as variables’. By checking this box, we tell SPSS not only to compute descriptives, but also 
to create new variables containing z-scores for each variable we are looking at. You should end up 
with something like Figure 4.32.

FIGURE 4.32 Descriptive statistics dialogue with option to save z-scores selected in SPSS

Click OK. The output pane will pop up as usual, but we’re not worried about that this time. 
Instead, turn back to your raw data. You’ll see six new variables containing z-scores (Figure 4.33).

FIGURE 4.33 Dataset with new z-score variables in SPSS

Each set of z-scores has been calculated exactly as we would calculate it by hand.
Now that we have z-scores for every month, we can more meaningfully compute mean perfor-

mance across months. To do this, we’ll use a new tool called Compute. Open the Transform menu 
and select Compute Variable at the top (see Figure 4.34).

(Continued)
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FIGURE 4.34 Menu option to compute values for new variables from current variables

You might be wondering why we’re using a different tool to compute a mean. The difference 
is the type of mean. Before, we were interested in computing the mean score within a variable, 
so we used Descriptives. This time, we’re interested in creating a new variable that is the mean 
of other variables. Any time you need to create a new variable, you’ll generally use Compute.

If you’ve done this successfully, the Compute dialogue box will pop up. This looks fairly 
complicated, but we don’t need to worry about anything here for now except the Target Variable 
and Numeric Expression sections. The Target Variable section lets you specify the name of 
your new variable. This can be whatever you want, as long as it doesn’t start with a number or 
contain spaces and inappropriate symbols (SPSS will tell you if you try to name it something 
inappropriate, and it’s easy to change). In our case, we want to compute the mean z-score, so 
we’ll just call it zMean.

In the Numeric Expression section, we provide code to SPSS to tell it what to put into the 
new variable. In this case, we want the mean of the six new z-score variables we just created.

In the Numeric Expression section, type: MEAN(Zjuly, Zaug, Zsep, Zoct, Znov, Zdec).
If you don’t trust yourself to spell the variable names correctly, you can also click-drag the vari-

ables or use the arrow button, just like we’ve been doing in other SPSS dialogue boxes. You should 
end up with something like Figure 4.35.

FIGURE 4.35  Compute variable dialogue in SPSS, with expression to compute new variable with 
mean of the six z-score variables

Click OK. Once again, the output pane will pop up, but we’re interested in the dataset itself. 
Click back over to the main dataset, and you should now have a new column of mean z-scores at 
the far right (you may need to scroll to see them) (see Figure 4.36).

(Continued)
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FIGURE 4.36 Newly computed mean variable in SPSS

Now that we have mean z-scores for each employee, we should convert them to percentiles 
to make the z-scores more interpretable. Once again open the Compute dialogue, but this time, 
change two things:

In the Target Variable section, type: Percentile.
In the Numeric Expression section, type: CDF.NORMAL(zMean,0,1).
Remember to change the Target Variable name, or you could overwrite your other variables 

instead of creating a new one!
Once ready, the dialogue box should look like Figure 4.37.

FIGURE 4.37  Compute variable dialogue in SPSS, with expression to compute new variable with 
percentile conversions of dataset z-scores

This formula is a little denser than the others we’ve covered, so let’s break it down – see Figure 4.38.

SPSS command to 
find the percentile 
associated with a 

score
 

The 
distribution 

mean

CDF NORMAL zMean. , ,0 1( )  

  The score             The distribution  
            standard  
            deviation

FIGURE 4.38 Annotated SPSS computation formula to convert z-scores to percentiles

(Continued)
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In this case, we have a distribution of z-scores, so we want to know the percentile associated 
with a standard normal distribution – this distribution has a mean of 0 and standard deviation of 1. 
By including ‘zMean’ as the score, SPSS uses the 0 and 1 for every calculation but changes each 
zMean for each row of data.

You should end up with Figure 4.39 (you may need to scroll further right).

FIGURE 4.39 Final dataset in SPSS with percentile conversions from zMean variable

Sort the data in the Percentile column in ascending order to see the lowest-ranking employees 
first. To do this, click on Data and then Sort Cases (Figure 4.40).

FIGURE 4.40 Menu option to sort data in SPSS

In the next dialogue, scroll down and drag Percentile to the right or use the arrow button. Ensure 
that ‘Ascending’ is selected so that the scores are ordered from smallest to largest (Figure 4.41).

(Continued)
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FIGURE 4.41 Dialogue to sort cases in SPSS

Click OK. At the top of your dataset, you’ll see the lowest-performing sellers. Now the situation 
is a bit clearer. Roughly a dozen employees stand out as particularly low sellers, month over month. 
Their z-scores are always negative (they are always below average), and there’s a fairly steep 
decline in percentiles down to this lower group. While other employees may have good months and 
bad months, these employees are consistently poor. That means these employees are definitely the 
ones that Jill should target. But what to do with them is up to her.

TEST YOURSELF

  After you’ve completed the questions below, check your answers online.

1 What distribution would you expect and why for each of the following situations?

a Tossing a coin.
b Counting employee absences.
c Collecting survey data.

(Continued)

Statistics in the Real World

 These web links can be accessed directly from the book’s website.
YouTube channel Numberphile gives an example of how probability doesn’t always work the 

way you intuitively think it should, which could lose you money on a game show: https://ed.ted.com/
featured/PWb09pny.

A demonstration from the National HE STEM Programme shows how normal distributions 
occur naturally given randomness alone using a real-life Galton Board: www.youtube.com/
watch?v=6YDHBFVIvIs.

How do you see normal distributions of data in your everyday life?.
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2 Using appropriate rounding as described in this chapter, what is the final answer for each of 
these computations?

a 4.12 * 2.64.
b (7.1/2.31)/4.1.
c 2.52 + 3.332.

3 If x- = 5 and s = 2, calculate x for the following z-scores:

a z = 1.5.
b z = −3.
c z = 2.25.

4 Without referencing a z-table, determine what proportion of cases we would expect to fall

a Between z = −3 and z = 1.
b Below z = −1.
c Below z = 2.

DATA SKILL CHALLENGES

 After you’ve completed the questions below, check your answers online.

Remember to try these calculations by hand and in the statistical program of your choice; the 
answers should agree.

1 Given this dataset: 1, 3, 2, 5, 4, 3, 2

a Convert each of these values to a z-score.
b What percentage of cases would you expect to fall above 2.5?
c What score would be at the 20th percentile?

2 Given this dataset: 3, 6, 2, 1, 2, 3, 4

a Convert each of these values to a z-score.
b What percentage of cases would you expect to fall below 2?
c What score would be at the 90th percentile?

3 Given this dataset: 5, 5, 7, 2, 3, 4, 4

a Convert each of these values to a z-score.
b What percentage of cases would you expect to fall above 4?
c What score would be at the 75th percentile?

4 Given this dataset: 2, 3, 3, 1, 4, 2, 3

a Convert each of these values to a z-score.
b What percentage of cases would you expect to fall below 3?
c What score would be at the 40th percentile?

(Continued)
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NEW TERMS

area under the curve: chance: classical method of assigning probability: distribution: intersection: 
percentile: Poisson distribution: probability: raw data: relative frequency of occurrence method of 
assigning probability: standard normal distribution: standardization (or standardized): uniform distri-
bution: union: z-distribution: z-score:

NEW STATISTICAL NOTATION AND FORMULAS

Sample mean  
(see Ch. 3, p. 83)

Sample standard deviation 
(see Ch. 3, p. 91)

z
x x

s
=

−

FIGURE 4.42 Annotated formula to compute a z-score from sample data

Population mean  
(see Ch. 3, p. 88)

Population standard deviation  
(see Ch. 3, p. 89)

z
x

=
− µ
σ

FIGURE 4.43 Annotated formula to compute a z-score from population data

Sample standard deviation 
(see Ch. 3, p. 91)

Sample mean  
(see Ch. 3, p. 83)

x zs x= +

FIGURE 4.44 Annotated formula to compute a raw score from a sample z-score
(Continued)
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Population mean  
(see Ch. 3, p. 88)

Population standard deviation  
(see Ch. 3, p. 89)

x z= +σ µ

FIGURE 4.45 Annotated formula to compute a raw score from a population z-score

Visit https://study.sagepub.com/landers2e for free additional online resources related to 
this chapter.

(Continued)
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