
16

2.4 R IN FOCUS

Frequency Distributions for Quantitative Data

R can be used to construct frequency distributions. In this section, we will construct a frequency
distribution table for the business safety data first listed in Table 2.3, which are reproduced here
for reference.

 45 98 83 50 86

 66 66 88 95 73

 88 55 76 115 66

 92 110 79 105 101

101 85 90 92 81

 55 95 91 92

 78 66 73 58

 86 92 51 63

 91 77 88 86

 94 80 102 107

Data reproduced from Table 2.3.

Create a dataframe in R called “complaints” that has the above safety data observations listed
in one column:

> complaints <- data.frame(Complaints=c(45,98,83,50,86,66,66,88,

+ 95,73,88,55,76,115,66,92,

+ 110,79,105,101,101,85,90,

+ 92,81,55,95,91,92,78,66,

+ 73,58,86,92,51,63,91,77,

+ 88,86,94,80,102,107))

First, let us order the data to see which businesses filed the fewest and most complaints by
using the order function on the Complaint column data from the complaint dataframe:

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

R in Focus: Sections for Privitera’s Essential Statistics for the Behavioral Sciences, Second Edition 17

> order(complaints$Complaints)

 [1] 1 4 36 12 26 33 37 6 7 15 31 10 32 13 39 30 18 43 25 3 22

[22] 5 34 41 8 11 40 23 28 38 16 24 29 35 42 9 27 2 20 21 44 19

[43] 45 17 14

The order function shows us that business observation 1 filed the fewest complaints, and busi-
ness number 14 filed the most. This might be helpful for us if we knew which businesses those
were. However, we may be more interested to know the most and fewest number of complaints
filed. For that, we can use the sort function:

> sort(complaints$Complaints)

 [1] 45 50 51 55 55 58 63 66 66 66 66 73 73 76 77 78

[17] 79 80 81 83 85 86 86 86 88 88 88 90 91 91 92 92

[33] 92 92 94 95 95 98 101 101 102 105 107 110 115

We can go a step further and create a table that shows us, for each number of complaints filed,
how many businesses filed that number:

> table(complaints$Complaints)

 45 50 51 55 58 63 66 73 76 77 78 79 80 81 83 85 86

 1 1 1 2 1 1 4 2 1 1 1 1 1 1 1 1 3

 88 90 91 92 94 95 98 101 102 105 107 110 115

 3 1 2 4 1 2 1 2 1 1 1 1 1

In the above output, we see that the most common numbers of complaints filed are 66 and
92: Four businesses filed 66 complaints and four businesses filed 92 complaints over the previous
3 years.

Next, we may want to know, for each value of number of complaints filed, what percentage
of all of the values each represents. We can do this by using the prop.table (proportion) function:

> prop.table(table(complaints$Complaints))

 45 50 51 55 58 63

0.02222222 0.02222222 0.02222222 0.04444444 0.02222222 0.02222222

 66 73 76 77 78 79

0.08888889 0.04444444 0.02222222 0.02222222 0.02222222 0.02222222

 80 81 83 85 86 88

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

18 PART I AnAlySiS in FocuS: R

0.02222222 0.02222222 0.02222222 0.02222222 0.06666667 0.06666667

 90 91 92 94 95 98

0.02222222 0.04444444 0.08888889 0.02222222 0.04444444 0.02222222

 101 102 105 107 110 115

0.04444444 0.02222222 0.02222222 0.02222222 0.02222222 0.02222222

This output shows us that the value 45 makes up 2.22% of all the values. Of course,
this output looks sloppy. First, there are too many values, and we can make it easier to read by
rounding our output with the round() function:

> round(prop.table(table(complaints$Complaints)),4)

 45 50 51 55 58 63 66 73 76

0.0222 0.0222 0.0222 0.0444 0.0222 0.0222 0.0889 0.0444 0.0222

 77 78 79 80 81 83 85 86 88

0.0222 0.0222 0.0222 0.0222 0.0222 0.0222 0.0222 0.0667 0.0667

 90 91 92 94 95 98 101 102 105

0.0222 0.0444 0.0889 0.0222 0.0444 0.0222 0.0444 0.0222 0.0222

 107 110 115

0.0222 0.0222 0.0222

In the above code, we gave the round() function two arguments. First, we gave it the data
that we wanted rounded, and second, we told it how many places we wanted our data rounded
to (in this case, 4). We can make our data easier to read by multiplying our output by 100 to get
the percentage:

> round(prop.table(table(complaints$Complaints)),4)*100

 45 50 51 55 58 63 66 73 76 77 78 79 80

2.22 2.22 2.22 4.44 2.22 2.22 8.89 4.44 2.22 2.22 2.22 2.22 2.22

 81 83 85 86 88 90 91 92 94 95 98 101 102

2.22 2.22 2.22 6.67 6.67 2.22 4.44 8.89 2.22 4.44 2.22 4.44 2.22

 105 107 110 115

2.22 2.22 2.22 2.22

Finally, let us assume we want to know the cumulative percentage for our values. We can use
the cumsum() function. First, I saved our output and work so far by assigning it the name safety.data,
and then I applied the cumsum() function to that object:

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

R in Focus: Sections for Privitera’s Essential Statistics for the Behavioral Sciences, Second Edition 19

> safety.data <- round(prop.table(table(complaints$Complaints)),4)*100

> cumsum(safety.data)

 45 50 51 55 58 63 66 73 76 77 78

 2.22 4.44 6.66 11.10 13.32 15.54 24.43 28.87 31.09 33.31 35.53

 79 80 81 83 85 86 88 90 91 92 94

37.75 39.97 42.19 44.41 46.63 53.30 59.97 62.19 66.63 75.52 77.74

 95 98 101 102 105 107 110 115

82.18 84.40 88.84 91.06 93.28 95.50 97.72 99.94

You may notice that our cumulative percent does not equal 100%, and it should. Can you
guess why? If you said it is due to rounding, you are correct! Remember, we rounded our data to
four decimal places, which influenced how the data added up.

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

20

2.7 R IN FOCUS

Frequency Distributions for Categorical Data

R can be used to summarize categorical data that are ungrouped. We can use R to create a fre-
quency distribution for the following hypothetical example: A group of health practitioners wants
to classify children in public schools as being lean, healthy, overweight, or obese; this type of clas-
sification is common (Centers for Disease Control and Prevention, 2013; Privitera, 2016). To do
this, the researchers calculated the body mass index (BMI) score of 100 children. Based on the
BMI scores, they classified 15 children as lean, 30 as healthy, 35 as overweight, and 20 as obese.

As usual, let us begin by creating our dataframe:

> BMI <- data.frame(BMI=c("lean","healthy","overweight",

+ "obese"), Total=c(15,30,35,20))

> BMI

 BMI Total

1 lean 15

2 healthy 30

3 overweight 35

4 obese 20

Similar to the previous section, we can calculate the percent (out of 100) for each category,
convert that calculation to a number out of 100 (to make it easier to read), and then calculate the
cumulative percentage:

> prop.table(BMI$Total)

[1] 0.15 0.30 0.35 0.20

> prop.table(BMI$Total)*100

[1] 15 30 35 20

> cumsum(prop.table(BMI$Total)*100)

[1] 15 45 80 100

As another example, instead of having the number of children classified as either lean, healthy,
overweight, or obese, we may simply have classification types for each child, which we can enter
into a dataframe:

> BMI.2 <-data.frame(BMI=c("lean","lean","healthy","overweight",

+ "lean","obese","obese","obese","lean",

+ "healthy","lean","obese","lean",

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

R in Focus: Sections for Privitera’s Essential Statistics for the Behavioral Sciences, Second Edition 21

+ "overweight","lean"))

> BMI.2

 BMI

1 lean

2 lean

3 healthy

4 overweight

5 lean

6 obese

7 obese

8 obese

9 lean

10 healthy

11 lean

12 obese

13 lean

14 overweight

15 lean

> table(BMI.2)

BMI.2

 healthy lean obese overweight

 2 7 4 2

> prop.table(table(BMI.2))

BMI.2

 healthy lean obese overweight

 0.1333333 0.4666667 0.2666667 0.1333333

> cumsum(c(.47,.13,.13,.27))

[1] 0.47 0.60 0.73 1.00

In this example, we see that there are 7 lean children, 2 healthy children, 2 overweight
children, and 4 obese children. The prop.table() function calculates the percentage for each of
these categories, and we can again use the cumsum() function to calculate the cumulative
percentage.

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

22

2.11 R IN FOCUS

Histograms, Bar Charts, and Pie Charts

To review, histograms are used for continuous or quantitative data, and bar charts and pie charts
are used for discrete, categorical, or qualitative data. As an exercise to compare histograms, bar
charts, and pie charts, we can construct these graphs for the same data by treating the data as a
simple set of general values. Suppose we measure the data shown in Table 2.16.

1 4 5 7

2 3 6 8

3 6 7 9

2 6 5 4

4 5 8 5

Table 2.16 A Sample of 20 Values

Because we are not defining these values, we can just call the variable “numbers.”
Creating a histogram in R is super simple! Of course, we are going to take advantage of this

and learn some new tricks in R. First, create the dataframe:

> numbers <- data.frame(numbers=c(1,4,5,7,2,3,6,8,3,6,7,9,2,6,5,

+ 4,4,5,8,5))

Next, create a histogram using the hist() function:

hist(numbers$numbers)

This does the job, but the labels are not professional. For example, the x-axis label is
numbers$numbers, which can be changed to our variable name, Numbers. We can also change the
title of our histogram. These changes can be done by passing more information to the arguments
of the hist() function. You can see the various arguments that the hist() function takes by looking
them up in the help menu:

> help(hist)

Let us now improve our histogram:

> hist(numbers$numbers, n=20, main="Histogram",xlab="Numbers")

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

R in Focus: Sections for Privitera’s Essential Statistics for the Behavioral Sciences, Second Edition 23

The “main” argument tells the hist() function what the title of the histogram should be, and the
“xlab” argument renames the x-axis label. Experiment with the “n=20” argument by changing it to
different values, such as “n=5” (note that the argument “break=5” will give you the same results).
What do you notice? This argument can be used to specify the width of what are called bins. Be
careful using this argument, because it can distort your histogram and therefore visualization of your
data. There is no best value to use; experiment with it to see what best illustrates your data.

Finally, let us say we want to compare two histograms to see how different bin width values affect
our histogram. We can divide our Plots window into two, where we see two plots in this one window:

> par(mfrow=c(2,1))

Now run this code:

> hist(numbers$numbers, n=2, main="Histogram",xlab="Numbers")

> hist(numbers$numbers, n=15, main="Histogram",xlab="Numbers")

Now we have two histograms in one window to compare (see Figure 2.1)! To change our
window back to its original view, type:

> par(mfrow=c(1,1))

Figure 2.1 Two Histograms With Different Bin Widths

We can use the par() function to view multiple plots in one window.

To become a better R user, it is important that you practice and experiment. Try using differ-
ent functions and arguments to see how they influence your results. For example, can you change
the colors of the bar graph using the arguments in the hist() function?

Copyright ©2019 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot

co
py

, p
os

t, o
r d

ist
rib

ute

