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CHAPTER 1. BASIC CONCEPTS OF 
PROPENSITY SCORE METHODS

In behavioral and social sciences, due to practical or ethical barriers, 
researchers often cannot collect data from random trials (Bai, 2011). 
Therefore, observational studies are often used to make causal inferences 
(Pan & Bai, 2015a; Shadish, Cook, & Campbell, 2002). Unfortunately, 
selection bias in observational research often poses a threat to the validity 
of these studies (Rosenbaum & Rubin, 1983). Selection bias occurs when 
the participants in one study condition (e.g., the treatment group) are sys-
tematically different in their preexisting characteristics from those in 
another condition (e.g., the control group). For example, if participants 
self-select into a treatment group, they may be more motivated, more con-
scientious, or more ambitious than those in the control group. When partici-
pants are randomly assigned to groups, this bias is usually reduced. On 
expectation, participants who are randomly assigned will have similar 
distributions of characteristics between the groups (i.e., those in the con-
trol group are just as motivated, conscientious, and ambitious as those in 
the treatment group). When covariates are equivalent across groups, they 
are balanced, and researchers can reasonably infer that any differences 
between the groups on the outcome variable are due to the causal (predic-
tor or independent) variable. If covariates are not balanced, as is often the 
case in observation studies, the preexisting differences between the 
groups may be responsible for any differences that we see in the outcome 
variables, resulting in a spurious treatment effect. To increase the validity 
of the treatment effect estimation, a variety of statistical adjustments  
may be used to reduce selection bias; however, some are more effective 
than others.

Over the past decades, propensity score (PS) methods have become 
increasingly popular for improving the validity of causal studies, as they 
can produce results that mimic those from true experimental designs when 
used appropriately (Rosenbaum & Rubin, 1985). Since their introduction 
by Rosenbaum and Rubin in 1983, PS methods have been used in many 
fields, such as education (e.g., Clark & Cundiff, 2011; Guill, Lüdtke, & 
Köller, 2017; Hong & Raudenbush, 2005), epidemiology (e.g., Austin, 
2009; Thanh & Rapoport, 2016), psychology (e.g., Gunter & Daly, 2012; 
Kirchmann et al., 2012), economics (e.g., Baycan, 2016; Dehejia & Wahba, 
2002), political science (Seawright & Gerring, 2008), and program evalua-
tion (e.g., Duwe, 2015). For example, Gunter and Daly used propensity 
scores when examining the relationship between violent video games and 
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deviant behavior. They found that after accounting for self-selection of  
the type of games played, PS matching decreased the treatment estimates, 
indicating that video games have a weaker effect on violent and deviant 
behaviors than previous research had suggested. Guill et al. compared  
several PS models to account for selection bias when examining how  
students on an academic track differed from those either on a nonacademic 
track or attending a comprehensive school on cognitive development. 
Duwe used PS matching to evaluate how well a prisoner reentry program 
reduced recidivism and increased postrelease employment.

Although research across a variety of fields has demonstrated that PS 
methods consistently improve the accuracy of treatment effects, there are 
still some challenges for researchers who apply these methods to their own 
empirical studies (Pan & Bai, 2016). While there are other volumes that 
cover more specific problems in greater detail than this text (e.g., Guo & 
Fraser, 2015; Leite, 2017; Pan & Bai, 2015a), this book provides an introduc-
tion to the general use and practical applications of PS methods so that after 
reading this book, the reader should be able to meet the following goals:

 1. Understand when it is or is not appropriate to use PS methods, given 
a researcher’s goal, design, and available data;

 2. Be able to assess the common support of the estimated propensity 
scores (i.e., how well the propensity scores are similar across groups);

 3. Be able to model and estimate propensity scores that will sufficiently 
account for selection bias in an observational study;

 4. Be familiar with the most common PS methods (i.e., PS matching, 
subclassification, inverse probability weighting, covariate adjust-
ment, and doubly robust adjustments) and have a sense of how to 
select the most appropriate method based on their research designs, 
data, and propensity scores;

 5. Know how to use those PS methods;

 6. Know how to assess individual covariates for balance across groups;

 7. Know how to estimate their adjusted treatment effect;

 8. Understand the limitations when using PS methods; and

 9. Get to know a variety of software packages used to implement  
PS methods through the book’s website.

The book is structured in this order so that the reader can follow all the 
steps necessary to complete a PS procedure. Each chapter is devoted to one 
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or two of these goals as listed above. Chapter 1 introduces the basic concepts 
of making causal inferences from experimental and observational studies, 
and then discusses propensity scores in terms of what they are, when to use 
them, why we use them (Goal 1), and the assumptions that need to be met 
when using them (Goal 2). Chapter 2 focuses on how to select appropriate 
covariates and model propensity scores (Goal 3). Chapter 3 discusses four 
commonly used PS methods (matching, stratification, weighting, and 
covariate adjustment) (Goals 4 and 5). Chapter 4 covers how to evaluate the 
balance of covariate distributions, how to estimate the adjusted treatment 
effect, and how robust the treatment effect estimation is against hidden bias 
(Goals 6 and 7). Chapter 5 summarizes the key points of PS methods,  
provides some general guidelines for handling common problems with  
PS methods, and introduces some new developments in PS methods  
(Goal 8). Finally, the companion website for this book at study.sagepub 
.com/researchmethods/qass/bai&clark provides instructions, code, and 
interpretations of output for a variety of statistical software packages that 
are commonly used to implement PS methods (Goal 9).

To help readers better understand the procedures for implementing  
PS methods, Chapters 2, 3, and 4 include an example of how to apply these 
procedures to real world data. These examples demonstrate each step of the 
PS procedures that correspond to what we previously discussed in the chap-
ter. The data are a subset of a dataset that is publicly available from the 
Inter-University Consortium for Political and Social Research (ICPSR 
35683). The data were originally used to assess the Playworks intervention, 
which is a recess program for elementary school children intended to 
improve social and emotional skills by teaching safe, engaging forms of play 
(www.playworks.org). Because software packages often change, the dataset, 
program codes, outputs, and interpretations of the output are provided on the 
book’s website. Readers are encouraged to replicate the examples using our 
code and check their results with those we provide online.

1.1 Causal Inference

1.1a Experimental Design and Observational Studies

In an experimental design, it is assumed that we obtain treatment and 
control groups with equal distributions of group member characteristics 
(except for the treatment condition) through random sampling and random 
assignment, thereby limiting potential selection bias, so that the factor of 
interest is the only cause of an effect. In contrast, researchers conducting an 
observational study, from which conclusions are drawn based on results 
from data collected without random assignment, are less confident when 
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making causal inferences. To better understand why this is an issue, in this 
section we briefly discuss the basic concept of causal inference and illustrate 
the importance of good research designs.

Suppose that we are interested in studying whether a recess program 
impacts social skills among elementary school children. According to the 
counterfactual framework for modeling causal effects, the true treatment 
effect for each child would be the difference between the treated outcome 
and the counterfactual (i.e., the outcome in the absence of the treatment) 
(Holland, 1986; Rubin, 1974). In this context, we would need to compare 
the social skills of each child who participated in the recess program (the 
“treatment” participants) to the same child’s social skills if he or she had not 
been in the recess program (the counterfactual).

Obviously, we cannot observe social skills under both of these conditions 
at the same time, since children cannot simultaneously be in the program and 
not be in the program. Therefore, as a reasonable alternative, one can estimate 
the average treatment effect (ATE) (Holland, 1986; Rubin, 1974; Winship & 
Morgan, 1999) for the population. To assess the ATE for the children’s social 
skills, we examine the difference between the expected value of social skills 
for all the children in the recess program and the expected value of social 
skills for all the children who were not in the recess program. If we randomly 
select students from the population and randomly assign them into the recess 
program, the ATE is an unbiased estimate of the treatment effect because the 
recess (treatment) group does not, on average, differ systematically from 
those who were not in the recess program (comparison group) on their 
observed and unobserved background characteristics.

However, in many research situations, randomized control trials (RCTs) 
or true experiments, in which participants are randomly selected and 
assigned to groups, are not always feasible. In some research situations, it 
is not possible to randomly assign participants to conditions, and in others 
it is not ethical to randomly assign them. For example, it is highly unlikely 
that we have the ability to manipulate parents’ expectations, force people to 
seek therapy, or control who attends college. Even when random assign-
ment is possible, it may not be ethical to randomly assign participants to 
risky conditions, such as smoking, alcohol use, cancer, sexually transmitted 
diseases, child abuse, or homelessness. However, the absence of random 
assignment should not prevent us from studying how psychotherapy affects 
depression (Bernstein et al., 2016); how alcohol use affects coronary heart 
disease (e.g., Fillmore, Kerr, Stockwell, Chikritzhs, & Bostrom, 2006); 
how maternal smoking influences birth weight and preterm birth (e.g., Ko 
et al., 2014); or how types of child abuse (physical, sexual, or emotional) 
impact depression and aggression in its victims (e.g., Vachon, Krueger, 
Rogosch, & Cicchetti, 2015).
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For example, when studying how parents’ expectations of their children’s 
academic success influence mathematics achievement, we cannot assign 
students to parents with high or low expectations, nor can we manipulate 
parents’ expectations. Therefore, it is very likely that students’ background 
characteristics in the two groups are significantly different, which may also 
influence their math achievement scores. Knowing that students are differ-
ent on their characteristics other than just their parents’ expectations, we 
cannot directly assess the impact of parents’ expectations on students’ math 
achievement using the observational data without controlling for other 
influential factors. The unbalanced distributions of the influential factors 
(often called confounding variables or covariates) between the two groups 
create selection bias, which usually causes a biased ATE. Naturally, our 
next question is, how can we draw valid, causal conclusions from observa-
tional studies? The next section addresses how this can be achieved.

1.1b Internal Validity of Observational Studies

A statistical causal inference is a claim made about a cause-and-effect 
relationship between two or more variables from a statistical model. 
Therefore, the validity of a statistical causal inference, also called internal 
validity (Shadish et al., 2002), refers to a researcher making a reasonable 
inference from a statistical analysis of the data in which there is little doubt 
that a causal relationship exists. Selection bias is a considerable threat to 
the validity of statistical causal inference in observational studies. As we 
discussed in the previous section, selection bias refers to systematic differ-
ences in distributions of covariates that result in incomparable groups (e.g., 
people in the treatment group are older, more motivated, or more educated 
than those in the comparison group). Selection bias typically occurs when 
observed (measured) covariates or hidden (unmeasured) covariates are not 
accounted for in statistical models or controlled for in the design, which 
results in spurious estimates of causal effects (Rosenbaum, 2010). For 
instance, using the previous example of parents’ expectations on students’ 
academic performance, existing literature indicates that students’ gender is 
related to both students’ math achievement (Fennema & Sherman, 1997) 
and parents’ expectations. Therefore, gender may be a confounding varia-
ble that influences students’ math achievement because students cannot be 
randomly assigned to parents with high expectations or low expectations. 
In this case, we cannot make any valid causal claims regarding the impact 
of parents’ expectations on students’ math achievement without controlling 
for the influence from the confounding factors. Moreover, students’ 
achievement in mathematics is also related to students’ personal beliefs 
(Gutman, 2006; Schommer-Aitkins, Duell, & Hutter, 2005); their peers’ 
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influence (Hanushek, Kain, Markman, & Rivkin, 2003); their reading abili-
ties (Hill, Rowan, & Ball, 2005); environmental variables (Koth, Bradshaw, 
& Leaf, 2008); sociodemographic variables (e.g., ethnicity, socioeconomic 
status); and school compositions (Entwisle & Alexander, 1992), which may 
also confound the effect of parents’ expectations on student achievement. 
With many such confounding variables, it is highly unlikely that all of the 
covariates in the study would be balanced between the high and low expec-
tation groups. If the distributions of these covariates are not balanced, any 
estimates made without accounting for this imbalance would weaken the 
validity of the statistical causal inference of the study.

From the above example, it is clear that we cannot directly analyze 
observational data for causal effect without adjusting or controlling for the 
confounding variables. The confounding variables can be hidden (not 
measured), nonmeasurable, or observable (measured and available to the 
researcher). If these variables are observable, it is possible to reduce selec-
tion bias and improve the validity of the statistical causal inference by 
adjusting or controlling for those covariates.

1.1c Existing Methods to Reduce Selection Bias

In many cases, we are not able to randomly select and assign participants 
to grouping conditions due to the constraints of the specific independent 
variable (e.g., researchers cannot randomly assign biological sex) or the 
will of the participants (e.g., participants are more likely to choose or be 
required to enter a drug rehabilitation program than to be randomly 
assigned into it). Therefore, we must find some way of balancing non-
equivalent groups to increase the validity of causal inference when 
randomized trials are not feasible. Several approaches that are commonly 
used to control the influence of covariates and confounding factors are to 
(a) use designs that test or rule out alternative causal explanations, (b) use 
designs that balance groups on specific covariates, (c) account for known 
sources of bias (observed covariates) through statistical models that adjust 
the treatment effects, and (d) combine two or more of these approaches 
(Shadish et al., 2002).

The first option is achieved by adding design elements, which are vari-
ables or conditions added to a research design to assess threats to validity 
by varying experimental conditions. These commonly include compari-
son groups (e.g., control, placebo, partial treatment) or observations over 
time (e.g., pretests, follow-up measures). For example, adding a sugar pill 
as a placebo to a medical experiment may help researchers determine 
whether observed effects are due to the active ingredients in a medication 
or a patient’s belief that the treatment will be effective. Adding a pretest 
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(even when participants are randomly assigned to groups) is common in 
educational studies, as it allows researchers to examine the difference  
in learning outcomes after instruction between two or more teaching 
methods or programs while controlling for preexisting characteristics that 
may influence students’ performance.

While researchers agree that adding relevant elements to quasi- 
experimental designs can be effective in reducing threats to internal validity 
(Larzelere & Cox, 2013; Murname & Willett, 2011; Shadish et al., 2002), 
this approach often requires a considerable amount of advance planning, 
complex statistical analyses, and available participants. Furthermore, these 
designs may not be feasible to carry out as a randomized study if assign-
ment to conditions could not be controlled by the researcher.

An instrumental variable (IV) model is another control method that uses 
a variable that is correlated with the predictor (or causal variable) but is not 
associated with the change in the outcome variable. An IV can be correlated 
with the outcome variable, but it must not explain the change in the outcome 
variable. For example, when attempting to estimate the causal effect of  
parents’ expectations on student achievement in mathematics, the correla-
tion between parents’ expectations and students’ math scores does not imply 
that parents’ expectations can cause students’ math scores to change. Other 
variables may affect both parents’ expectations and student achievement, or 
student achievement may affect parents’ expectations. Since we cannot 
manipulate parents’ expectations of their children, we may estimate the causal 
effect of parents’ expectations on student achievement by using parents’ 
income as an instrument. This assumes that parents’ income impacts their 
expectations, but income is only correlated with student achievement 
through the effect of parents’ expectations. If we find that parents’ income 
and student achievement are correlated, this may be evidence that parents’ 
expectations have a causal effect on student achievement. Unfortunately, 
despite Bowden and Turkington’s (1990) claim that IV models produce 
results comparable to an experimental design, in practice, it can be difficult 
to correctly identify appropriate IVs to produce consistent treatment effect 
estimates (Land & Felson, 1978).

Researchers can also match participants on one or several potentially 
confounding variables either before or after an intervention to achieve simi-
larity between treatment and control groups (Rubin, 2006). This is usually 
used in quasi-experimental designs. Although either continuous (e.g., age 
or parents’ income) or categorical (e.g., gender or ethnicity) variables may 
be used in this matching process, it is easier to match on a couple of cate-
gorical variables than on several variables. Despite the common use of this 
method in quasi-experimental design, traditional matching presents two 
problems: (a) It is difficult to find exact matches for continuous variables, 
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and (b) it is difficult to match group members on multiple covariates, even 
with categorical variables. Using the parents’ expectation study as an exam-
ple, if we wanted to match on parents’ income, this would require that we 
find the same parental income (e.g., $65,000) for a child in the treatment 
group and in the control group. Given the variability of incomes, it is 
unlikely that we would find many parents in each group that have the same 
income. Matching on a single categorical variable, such as gender, would 
not be difficult; however, finding a child in the control group with the same 
gender, ethnicity, native language, and family composition as each child in 
the treatment group would limit the number of potential matches. By limit-
ing the number of matches made between the treatment and control groups, 
the sample size is reduced, which also decreases statistical power and gen-
eralizability of research results.

The first problem can be resolved by using proximal matching, which 
matches members based on similar values (e.g., a student whose parents’ 
income is $65,000 can be matched with a student whose parents’ income is 
$64,800), rather than exact values. The second problem could be reduced 
by limiting the number of matching variables to one or two. However, this 
would also restrict the number of confounding variables that are balanced; 
therefore, estimated treatment effects are still biased even after matching.

Another common strategy is to control the confounding factors in non-
randomized studies by using traditional covariate adjustment, such as 
analysis of covariance (ANCOVA) or a form of regression (e.g., ordinary 
least squares or logistic). These approaches partial out the effects of con-
founding variables on the treatment effect by including covariates in the 
statistical model (Eisenberg, Downs, & Golberstein, 2012; Jamelske, 
2009; Ngai, Chan, & Ip, 2009). In the simplest case, researchers may use 
a pretest observation as a covariate with the hope of controlling for the 
group differences on pretest scores. More commonly, researchers will 
include several other confounding variables as covariates, knowing that 
treatment groups are probably different on those variables that also influ-
ence outcome estimations other than just pretest scores. Even though tra-
ditional covariate analyses can control for confounding factors to some 
extent (Leow, Wen, & Korfmacher, 2015; Stürmer et al., 2006), using 
these approaches presents some theoretical and practical problems. First, 
these statistical models may be easily misspecified due to small or unequal 
sample sizes, violations of statistical assumptions, or covariates that may 
not be able to sufficiently account for confounding due to the limited 
number of covariates that can be included in a specific model or an 
unmeasured confounding variable. While adding additional covariates 
may reduce confounding, each new covariate added to the model will 
reduce the statistical power.
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A second major problem in using traditional covariate adjustments is that 
these analyses do not directly model bias. That is, covariates are not 
weighted according to how well they balance covariates, but rather how 
well they relate to the dependent variable. Therefore, rather than accounting 
for differences between groups in the covariate, they focus on accounting 
for the shared variance between the covariate (for all participants) and the 
outcome variable. For example, in a job training program, if the correlation 
between the starting and posttest salaries was high (e.g., r = .7), the covari-
ate alone would explain 49% of the variance of the posttest salary. While 
this would still leave 51% of the variance unexplained, the unique contribu-
tion of the job training program may not be strong enough to be detected as 
a significant effect through an ANCOVA model. Despite the popularity of 
using traditional covariate adjustments to account for selection bias, they 
may not be appropriate statistical procedures for reducing selection bias.

Another significant limitation of covariance analysis is that including 
several covariates in the model simultaneously may reduce statistical 
power. However, if researchers limit the number of covariates, they may 
fail to control for all influential factors and still end up with a biased esti-
mate of the causal effect. For example, in our job training example, there 
are many factors related to salary increases, so if we account for only some 
of these factors, the effect of job training on salary increase may not be 
estimated correctly. Therefore, only in some cases will covariance analysis 
be effective in controlling for the confounding factors from selection bias. 
Thus, it is clear that we need better methods. Although there are a variety 
of procedures that suitably model and reduce selection bias in observational 
studies (e.g., Camillo & D’Attoma, 2010; Heckman, 1979), some of the 
most widely used approaches use propensity scores (Rosenbaum & Rubin, 
1983). The following sections will focus on the basic concepts related to 
this approach.

1.2 Propensity Scores

1.2a What Is a Propensity Score?

A propensity score is the probability that a participant would be assigned 
to a particular study group based on a set of covariates (Rosenbaum & 
Rubin, 1983). Most often, propensity scores are estimated as the likelihood 
that a person would be assigned or self-select into a treatment condition 
(see Chapter 2 for details as to how they are computed). As probabilities, 
propensity scores range from 0 to 1. Scores above .5 predict that a partici-
pant will be in the treatment group, and those below .5 predict that a partici-
pant will be in the control or comparison group. However, the goal of 
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propensity scores is not to perfectly predict assignment condition, but to 
create a single composite score to represent the whole set of covariates that 
can be used to account for group differences on all observed characteristics 
or confounding factors due to selection. This also assumes that participants 
with the same propensity scores will have the same distributions of 
observed covariates between the treatment and comparison groups. As 
such, the propensity score can then be used with a variety of statistical 
adjustments that should make the background characteristics or covariates 
of the participants in the treatment group comparable to those in the control 
or comparison group—as one would see with random assignment 
(Rosenbaum & Rubin, 1983). Common statistical adjustments used in PS 
methods include (a) matching, which pairs participants from treatment and 
control groups based on the proximity of their propensity scores; (b) sub-
classification (or stratification), which groups participants who are matched 
on several strata based on their propensity scores; (c) weighting, which 
multiplies outcome observations by a weight based on the propensity score; 
and (d) covariate adjustment, which uses propensity scores as a covariate 
in an ANCOVA or regression. These adjustment methods and how to con-
duct them are described more fully in Chapter 3. In theory, PS methods 
should balance the treatment groups on all of the observed covariates  
used to compute the propensity scores and reduce the bias caused by  
nonrandom assignment. If propensity scores are modeled appropriately, 
the adjusted treatment effects should be unbiased (Rosenbaum &  
Rubin, 1985).

1.2b Why Use Propensity Scores?

PS methods may not be our first choice in controlling for bias in research, 
but they may be the best alternative to random assignment, as they address 
selection bias at the design level, as opposed to other statistical control 
procedures. As discussed in Section 1.1c, several existing methods can be 
used to control for confounding variables in observational studies. Under 
certain conditions, these methods can be effective in reducing bias. 
However, they also have several limitations, many of which PS methods 
can reduce. Like instrumental variables, covariate matching, and covariate 
adjustments, PS methods can also be conducted on existing data. Therefore, 
they permit the use of archival data to balance nonequivalent groups when 
designs cannot be altered.

While both the instrumental variable approach and covariate matching 
can reduce bias, these procedures only allow researchers to balance 
groups on the variables included in these adjustments. In many cases, 
only a single variable is used as the instrumental variable, which needs to 
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meet certain conditions that can be difficult to operate or identify (e.g., it 
must correlate with the treatment variable, but not the change in the out-
come variable). Since it is probable that selection bias is affected by 
several variables, not all of these would be equally distributed between 
the treatment and control groups. Therefore, even if the instrumental 
variable meets the conditions for a certain analysis, selection bias may 
not be sufficiently reduced.

When matching on multiple covariates, it is very difficult to match on all 
of them simultaneously, as each additional covariate limits the number of 
viable matches. This often means that researchers must either match on 
several variables with limited levels (e.g., biological sex with options for 
only male or female, or age with options for only young or old) or select 
only a few influential variables with several levels (e.g., high school GPA 
or ACT when participants self-select into college). A better solution would 
be to use a composite score that aggregates several variables into one.

As a composite score, a propensity score combines the simplicity and 
statistical power of using a single score with the thoroughness of using 
multiple covariates by accounting for the variance of several variables 
concurrently (Rosenbaum & Rubin, 1983). Propensity scores aggregate 
multiple covariates into a single score, and covariates are weighted in a 
way that considers their relative importance in assignment to conditions. 
This solves the problems presented not just when using instrumental vari-
ables and covariate matching, but when using traditional covariate adjust-
ment too.

Although traditional covariate adjustment can accommodate several 
covariates, statistical power can still be affected when trying to include 
several covariates, especially when using a small sample size. More impor-
tantly, propensity scores actually model selection bias, not the predictabil-
ity of the dependent variable. Therefore, by using PS methods, researchers 
can actually account for statistical estimation bias from model misspecifi-
cation due to design issues, rather than how the individual covariates relate 
to the outcome variable. This is why matching, stratifying, or statistical 
adjustments using propensity scores often reduce selection bias better than 
analysis of covariance or multivariate models (Grunwald & Mayhew, 2008; 
Peterson et al., 2003).

Despite the advantages that PS methods have over other methods used to 
reduce selection bias, propensity scores still have their limitations. Several 
conditions and assumptions should be met when using propensity scores, 
which are discussed in the next few sections. Like most statistics, if these 
assumptions are not met, propensity scores may not effectively reduce 
selection bias. These limitations and ways of addressing them are discussed 
in greater detail in Chapter 5.
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1.2c When to Use Propensity Scores

PS methods have been used to reduce group selection bias or adjust treatment 
effects in nonrandomized experiments in a variety of behavioral and social sci-
ence fields (Baycan, 2016; Gunter & Daly, 2012; Kirchmann et al., 2012), and 
their use has increased exponentially within the past few decades (Bai, 2011). 
Unfortunately, their increased popularity could also lead to misuse (Pan & Bai, 
2016). Like most statistical methods, they are appropriate only under certain 
conditions. PS methods are intended to balance group data when treatment 
assignment is nonignorable (e.g., assignment is not random, clearly specified, or 
maintained by participants); assess treatment effects when using quasi- 
experiments or other types of group comparisons using observational data; and 
aggregate several covariates into a single variable (the propensity score) to be 
used for statistical adjustments (Guo & Fraser, 2015; Shadish, 2010).

Because PS methods were created to improve internal validity, they should 
be used when researchers attempt to draw causal inferences from their observa-
tional studies. Propensity scores are used to account for preexisting individual 
characteristics that may be related to the treatment conditions tested for causal 
effects; therefore, we must be able to establish that the intended cause (even if 
it isn’t a treatment or intervention) precedes the effect.

While propensity scores can be applied to a variety of nonrandomized 
experiments, they are intended to test causal effects from observational 
studies in which the assignment method is unknown. This may include 
quasi-experiments, natural experiments, or causal comparative studies. 
Within these studies, there are several ways in which assignment can be 
nonrandom, but corrected with PS methods:

 1. Participants may have self-selected into a treatment. For example, 
when examining how the mode of instruction affects academic per-
formance in college students, students may choose to sign up for an 
online course (treatment) instead of a face-to-face course (compari-
son) because it fits their schedules.

 2. Someone assigned participants to groups based on an inconsistent or 
unknown criterion. If more than one person is determining who gets 
into the treatment, each person may use different standards for 
admission, or administrators may make exceptions for some by alter-
ing the criterion. For example, some children may be admitted to a 
gifted education program simply because they have ability scores 
that exceed 130, while others (who demonstrate high motivation to 
success or independence) are admitted with scores of 120.

 3. The causal variable is not directly manipulated by the researcher. In 
cases of causal comparative or natural experiments, the event or 
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characteristic that we assume is causal is not a treatment or interven-
tion that is imposed by a researcher; it is an existing characteristic or 
accidental event. Examples of these may include biological sex, birth 
order, marital status, socioeconomic status, and medical condition. A 
more specific example is illustrated in Almond’s (2006) study that 
examined the effects of prenatal exposure to influenza on long-term 
health, education, and economic outcomes.

In all of these examples, the reasons for participants’ assignment to treat-
ment conditions is unknown or unclear, and using PS methods would be 
appropriate. However, if the assignment is based on a known (and maintained) 
criterion, such as when alcoholics are assigned to substance abuse programs 
based on the severity of their addictions, a regression discontinuity design 
(RDD) may be more effective and easier to use than PS methods. In theory, an 
RDD works under the same principles as a randomized control trial, in that we 
know the selection mechanism; therefore, we can control for it. By assigning 
participants to groups based on the value of a baseline characteristic, this 
serves as a proxy to random assignment and should account for selection bias. 
According to Shadish (2010), “Such assignment is called ignorable because 
potential outcomes are unrelated to treatment assignment once those known 
variables are included in the model, so an unbiased estimate can still be 
obtained” (p. 6). However, this assumes that the criterion for assignment is 
strictly followed, and that if participants are assigned to groups based on more 
than one variable, all assignment variables are included in the statistical model.

Finally, to balance covariates on several characteristics, researchers must 
have several measured covariates, which are related to both selection into 
conditions and the outcome variable, available to include in PS models. If 
researchers conduct their study using secondary data that is limited to a few 
demographic covariates, it is unlikely that they will be able to sufficiently 
model the selection process. In such cases, propensity score methods may 
not sufficiently reduce bias (Steiner, Cook, Shadish, & Clark, 2010). 
Therefore, it is recommended that researchers consider what variables are 
likely to influence assignment to conditions before data are collected so that 
these can be measured or use existing data with sufficient covariates.

1.3 Assumptions

1.3a The Ignorable Treatment Assignment Assumption

One of the assumptions when using PS methods is that assignment to treat-
ment conditions is independent of the treatment effect after accounting for a 
set of observed covariates. In a randomized experiment, this assumption is 
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often met even without accounting for covariates, since (on expectation)  
random assignment balances all covariates between treatment conditions. Of 
course, this assumption is not guaranteed in a quasi-experiment, particularly 
when participants self-select into conditions. Under this assumption, if the 
distributions of the propensity scores are balanced between the treatment con-
ditions, the distributions of the covariates used for obtaining propensity scores 
are also equal between the treatment conditions. Therefore, we assume that 
selection bias has been eliminated (or sufficiently reduced) after making sta-
tistical adjustments with the propensity scores, provided that all the confound-
ing variables are measured. This is why we use PS methods in the first place.

One way to verify that selection bias has been reduced after using PS 
adjustments is to examine the relationship between treatment conditions 
and each observed covariate. A difference between the group means (or 
proportions when covariates are categorical) suggests that the covariate is 
unbalanced and violates this assumption. Chapter 4 more fully describes 
various methods for testing the balance of covariates.

Of course, we can only test for covariate balance on the variables that we 
measured and included in the PS estimation model. Although researchers 
should attempt to control for all reasonable sources of bias in the set of 
observed covariates used to estimate the propensity scores, it is likely that 
some unmeasured or unobserved covariates are not included; thus, selec-
tion bias remains even after PS adjustments. In this case, these omitted 
variables are sources of hidden bias that still affect treatment effects.

For example, if a covariate, such as risk for child abuse, is related to 
treatment assignment and the outcome, but is not included in the PS estima-
tion, the treatment effects will still be biased. When the propensity scores 
calculated from the set of covariates do not represent all influential covari-
ates, they cannot balance the distributions of all covariates between the 
groups. In this case, the ignorable treatment assignment assumption is not 
met using PS methods. When covariates were limited to only a few com-
monly available demographic covariates (e.g., age, ethnicity, sex, and mari-
tal status), less than half of the selection bias was removed (Steiner et al., 
2010). Therefore, it is essential that all the covariates that contribute to 
selection bias are included in the PS model. Chapter 2 provides more guid-
ance on how to select covariates so that this assumption is met.

1.3b The Stable Unit Treatment Value Assumption

The second assumption when using PS methods is that the treatment 
effect for each individual will not depend on how each person gets into his 
or her respective condition. This requires that (a) the outcome does not 
depend on the assignment procedure (i.e., randomized or self-selection) and 
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(b) the treatment is the same for all participants in the treatment group 
(Holmes, 2014; Rosenbaum & Rubin, 1983). According to Cox (1958), 
“The observation of one unit should be unaffected by the particular assign-
ment of treatment to the other units” (p. 19). When implementing PS meth-
ods, such as PS matching, the stable unit treatment value assumption 
(SUTVA) assumes that (a) within a matched pair, Participant A in the treat-
ment group and Participant B in the control group have the same likelihood 
of being assigned to the treatment or control group; and (b) Participant A 
receives the same type and amount of treatment as the other participants in 
the treatment group who were selected through PS matching.

SUTVA is violated when the outcome depends on the version of the 
treatment participants receive or when there is an interaction between par-
ticipants that would allow them to share the treatment. This can also be 
explained in terms of specific threats to validity: (a) unreliability of treat-
ment implementation, in which treatment is not given consistently to each 
person in the treatment condition; (b) compensatory equalization, when 
participants in the control group receive an alternate version of the treat-
ment; (c) compensatory rivalry, when participants in the control group are 
motivated to perform as well on the outcome as those in the treatment 
group; (d) resentful demoralization, when participants in the control group 
reduce their effort on the outcome because they did not receive the treat-
ment; and (e) treatment diffusion, when the participants in the control 
group learn the treatment for those in the treatment group (Shadish et al., 
2002). Under these circumstances, the participants did not receive the treat-
ment (or lack of treatment) that they were assigned to receive. Clearly, we 
cannot make reasonable inferences about the effect of treatment if a partici-
pant actually receives a different treatment.

1.3c Sufficient Common Support or Overlap

The third assumption implies that there is sufficient overlap in the dis-
tributions of the propensity scores estimated for the treatment and control 
groups; that is, the two groups being compared share a common support 
region of propensity scores in the sample data. This presumes that partici-
pants with the same propensity scores have an equal chance of being in 
either the treatment or control group based on the similarity of their back-
ground characteristics or covariates, which would allow us to isolate the 
treatment and make a reasonable (unbiased) comparison between the two 
groups. For example, if two employees both have a propensity score of 
.7, each has a 70% chance of being in a job training program based on his 
or her background characteristics. Then, we can reasonably compare their 
salaries after one completes the training program while the other does not. 
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If most of the members in the treatment group have propensity scores 
that are similar to those in the control group, we assume that the two 
groups are comparable. The proportion of the similarity of the propensity 
scores of the treatment and control or comparison groups is called  
common support. If the comparison groups do not have sufficient com-
mon support, they are not comparable; therefore, PS methods should not 
be used.

Even though propensity scores are the predicted probabilities of selec-
tion into a condition, the goal of PS methods is not to predict group 
membership, but to use propensity scores to balance treatment and con-
trol groups. The best cases for PS methods are actually those who are 
assigned to the treatment group, but are just as likely to be in the control 
group (and vice versa). Ideally, the PS distributions for both the treatment 
and control groups would be normal and have a mean of .5 with equal 
standard deviations. Under these conditions, we are most likely to repli-
cate random assignment, as participants in one group will be very similar 
to those in the other group, which will allow one to obtain an unbiased 
treatment effect. However, we may not always see these distributions, 
especially when using several covariates that are strongly related to selec-
tion. Sometimes, we find that those in the treatment group have higher 
propensity scores than those in the control group. Therefore, in some situ-
ations, we may need to improve the common support by having more 
variability in the propensity scores of those in the control group compared 
with those in the treatment group, which may be achieved by having pro-
portionally more participants in the control group who can be matched to 
those in the treatment group.

There are several methods for examining common support, such as the 
following: (a) making a visual inspection of the PS distributions, (b) com-
paring the minimum and maximum values of the propensity scores of each 
group, (c) using a trimming procedure (d) running an inferential test to 
determine if the distributions are significantly different from each other, or 
(e) estimating the mean difference of the propensity scores.

For the first method, researchers may simply graph PS distributions for 
the treatment and control groups and visually inspect the extent to which 
they overlap (Bai, 2013; Shadish, Clark, & Steiner, 2008). This can be done 
by comparing histograms or boxplots of the distributions of propensity 
scores for each group. As shown in Figure 1.1, nearly all of the propensity 
scores for those in the treatment group are between .03 and .5, while the 
propensity scores for the control group are between 0 and .8. Therefore, the 
area of common support (indicated by the box over the distributions) is 
between .03 and .5; those with propensity scores above .5 and below .03 do 
not have comparable matches.
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For the second method, one would “delete all observations whose pro-
pensity score is smaller than the minimum and larger than the maximum in 
the opposite group” (Caliendo & Kopeinig, 2008, p. 45). For example, if 
propensity scores in the treatment group range from .03 to .9 and the pro-
pensity scores in the control group range from 0 to .8, the overlapping 
distribution (or common support) is between .03 and .8.

The third method was used by Smith and Todd (2005), by which they iden-
tified the range of propensity scores that had a positive density within both 
distributions. This method not only excludes the observations in which the 
propensity scores do not overlap, but also drops cases with low frequencies  
of propensity scores in each group. For example, suppose that all overlapping 
propensity scores are between .03 and .8, but there are very few cases in one 
group or both groups with propensity scores between .5 and .8. In this 
approach, not only would we exclude all cases with propensity scores that 
were greater than .8 or less than .03, but we would also drop participants in the 
control group whose propensity scores were greater than .5. Likewise, if there 
were very few cases in the treatment group with propensity scores between  
.03 and .1, these cases would also be dropped (Caliendo & Kopeinig, 2008).

The fourth method consists of using an inferential statistic, such as  
the independent samples Kolmogorov-Smirnov test, to determine whether 
or not there is a significant difference between the distributions of the 
propensity scores for the treatment and control groups (Diamond & 
Sekhon, 2013). A significant difference between the two distributions 
would indicate poor common support. However, this method is not  

Figure 1.1  The propensity score distributions for the treatment and 
control groups
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recommended for the same reason that covariate balance should not be 
assessed with inferential tests: because “balance is a characteristic of the 
observed sample, not some hypothetical population” (Ho, Imai, King, & 
Stuart, 2007, p. 221). In the fifth method, researchers compute the  
standardized difference score (d = (MT - MC)/sp) to compare the means of 
the propensity scores for the treatment (MT) and control groups (MC). A 
small difference score (i.e., d < .5) indicates good common support.

Unfortunately, what constitutes sufficient common support is still not 
clear, since not all of these methods provide a clear criterion. The visual 
inspection using graphs and the minima and maxima comparison may pro-
vide clear criteria for cases that share common characteristics, but we do 
not know how much of this shared support is sufficient. While researchers 
have offered some guidelines, their standards are not universally recog-
nized. For example, Bai (2015) found that selection bias is most likely to 
be reduced with PS matching if at least 75% of the propensity scores over-
lap in each distribution. If using the method of comparing the standard 
mean differences, Rubin (2001) recommends that the standardized mean 
difference between the group distributions is less than .5.

However, these general guidelines may not be sufficient when consider-
ing that the specific method of determining common support and (more 
importantly) of how to handle common support depends on the distribu-
tions of the data and the particular matching methods used to adjust the 
treatment effects. For example, if distributions are skewed or have many 
outliers, the inferential test or trimming procedure may assess common 
support better than the minima and maxima comparison or the standardized 
mean difference. Also, the specific method of matching will address how 
the degree of common support is managed. Caliper matching (see Chapter 3)  
uses cases with the best common support (or closest PS matches), while 
stratification is more lenient in its requirements for common support by 
allowing more flexibility in the acceptable matches. It is important to 
understand that how common support (or more importantly, how a lack of 
common support) is handled influences the validity of the results of the 
estimated treatment effect when using PS methods. Regardless of how 
common support is assessed, the defined region of common support 
determines which cases remain in the analyses. For instance, those cases 
with propensity scores outside of the range of common support may or may 
not be included in the final outcome analyses, depending on the specific PS 
method selected. If PS matching with a caliper is used, the cases with pro-
pensity scores outside of the range of common support are usually excluded 
in the final sample selected to estimate the treatment effect. While this 
restriction of cases improves the ability to match comparable cases and 
presumably improve internal validity, it also poses potential problems to 
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external and statistical conclusion validity. First, it may limit our ability to 
generalize the study results to the population. That is, if the cases that we 
dropped (i.e., those who are very likely to be selected for treatment) were 
systematically different from those who remained in the analysis (i.e., those 
who were just as likely to be selected into the treatment group as the control 
group), the sample selected may no longer represent its original population. 
Second, dropping cases will reduce the sample size, which may affect  
statistical power. Excluding only a few cases from a dataset with a large 
sample size is not problematic, but dropping half the cases from an already 
small sample may underpower the analysis for the treatment effect. Type II 
errors are just as misleading as selection bias. Therefore, if the  
common support is not sufficient, PS methods should not be used.

1.4 Summary of the Chapter

PS methods can be effective in reducing selection bias in observational data 
and increasing the validity of statistical causal inference when used appropri-
ately. More specifically, they can (a) control for multiple covariates using one 
composite score, (b) balance the influences from covariates on causal effect 
estimation when used as weights or covariate adjustments, and (c) create 
balanced groups that mimic those in true experimental designs. Under many 
conditions, PS methods are preferable to other methods used to reduce selec-
tion bias. However, it is important to note that, for propensity scores to be 
most effective, the conditions and assumptions that were discussed previ-
ously in this chapter must be met. The checklist below is provided to help you 
determine whether or not a PS method is suitable for your observational 
study. Assuming that it is, the next steps are to learn how to estimate and 
apply propensity scores. In the following chapters, we will focus on the prac-
tical applications of PS methods with an empirical example throughout the 
book to illustrate how to use PS methods.

Checklist for Using Propensity Score Methods

5 You plan to examine the causal relationship between a treatment and an 
outcome.

5 You are not certain how participants were assigned to treatment groups.

5 You are familiar with theoretical or empirical evidence for why participants 
might choose (or be assigned to) treatment groups.

(Continued)

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



20

5 You have access to several measured covariates that are related to the 
treatment condition and the outcome variable(s).

5 The set of available covariates will include nearly all confounding factors 
that impact causal variables and outcomes.

5	 There	is	sufficient	overlap	in	the	PS	distributions	between	the	treatment	
and control groups.

5 There is very little missing data within each covariate.

5 Measures of the covariates are valid and reliable.

(Continued)

Study Questions for Chapter 1

1. What is a group selection bias?

2. What is a propensity score?

3. When should researchers use PS methods instead of other methods  
to control for selection bias?

4. How do PS methods control for selection bias?

5. When might PS methods not sufficiently reduce bias?
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